

UDC 541.64:547.5644

SYNTHESIS AND SPECTROSCOPIC CHARACTERIZATION OF Fe(III), Mn(II) AND Cu(II) COMPLEXES WITH N'-MALEOIL-SALICYLIC-HYDRAZID

¹G.H. Gondolova, ²A.A. Medjidov, ²P.A. Fatullayeva, ²A.I. Israfilov

¹Institute of Ecology and Natural Resources

Ganja Branch of the National Academy of Sciences of Azerbaijan

H.Aliyev Avenue, 153, AZ 2003 Ganja, Azerbaijan; e-mail: gulgargondolova@gmail.com

²Acad. M. Nagiyev Institute of Catalysis and Inorganic Chemistry

National Academy of Sciences of Azerbaijan

AZ 1143 Baku, H. Javid Avenue, 113, Azerbaijan

[$Fe(C_{11}H_9N_2O_5)_2(H_2O)_2\right] \cdot 3(C_3H_7NO)$ (1), [$Mn(C_{11}H_9N_2O_5)_2(H_2O)_2\right] \cdot 3(C_3H_7NO)$ (2) and [$Cu(C_{11}H_9N_2O_5)_2(H_2O)_2\right] \cdot 3(C_3H_7NO)$ (3) complexes have been synthesized and characterized by elemental analysis, FT-IR and EPR spectra, magnetic susceptibility and thermal analysis. All complexes show distorted octahedral geometry. In 1, 2 and 3 complexes, metal ions are coordinated by means of two oxygen atoms of salicylic residue and two nitrogen atoms bonded with maleic residue and two water molecules.

Keywords: synthesis, Fe(III), Mn (II) and Cu(II) complexes, thermal behavior, magnetic properties

1. Introduction

Hydrazides of carboxylic and dicarboxylic acids are of theoretical and practical interest. An emphasis laid on these compounds is due, first of all, to their ability to change the dentation depending on reaction conditions and form both mononuclear and polynuclear complexes. N'-acylsalicylhydrazides contain two or three nitrogen and oxygen donor atoms which can coordinate with metal atoms and give rise to various structural types such as trinuclear polymer [1], hexanuclear, octanuclear, decanuclear and dodecanuclear metalladiazamacrocycles [2-4].

At present, quite a lot of theoretical and experimental data have been accumulated on the physical-chemical properties, composition and structural features of transition metal complexes. This is due to the fact that many of their coordination compounds have high

physiological activity to serve as a basis for creating promising materials. In particular, they are based on characteristic hydrazides complexes TB [5-6], anticancer [7-9], anti-malaria [10] and antimicrobial [11-12] activity and bactericidal, fungicidal, and antiviral [13] effect.

The aim of our work is to search for ligands that form polynuclear complexes. With that end in view, we synthesized a N'-acylsalicylhydrazide ligand [(2-hydroxybenzoyl) of hydrazinyl]-4-oxobut-2-enoic acid (H₄L) by means of the method [14] based on the following: it is a potential heptadentate ligand with -OH, -COOH and -CONHNHCO- which can construct multinuclear coordination polymers with transition metals. However, as shown in the work, this compound together with Fe(III), Mn(II) and Cu(II) ions behave as a bidentate monoanionic ligand.

2. EXPERIMENTAL

2.1. Measurements

Note that IR spectra were recorded on a NicoletIS10 Spectrometer using KBr discs in the range 4000–400 cm⁻¹. The ¹H and ¹³CNMR spectra were obtained on a

BrukerDPX-400 Spectrometer using MeOD-solvent at 300 K. Magnetic moments at 25°C were determined using the Faraday method with Hg[Co(SCN)₄] as calibrant.

2.2 Synthesis of H₄L (N'-maleoyl-salicylic hydrazide)

Salicylhydrazide was synthesized according to the literature procedure.

Maleic anhydride (0.981 g, 10 mmol) was added to the solution of methanol (40 mL) with salicylhydrazide (1.52 g, 10.0 mmol) at room temperature. The reaction mixture was stirred. The reaction was over in a short time (5~10 min) with higher yields. The white crystalline product was washed with methanol, and dried on air. The purity of the ligand was checked by IR spectra, and melting point. Yield: 95% m.p. 188⁰C; Found: C, 52.8; H, 4; N, 11.2 %. Anal. Calcd. for: C₁₁H₁₀O₅N₂ C,

53.4; H, 4.2; N, 10.8 %. ¹H NMR (MeOD), δ ppm: 7.92 (d, 1H, o-PhCH); 7.46-7.43(m,1H;p-PhCH), 6.98-6.96(m, 2H m-PhCH), 6.41-6.39 (m, 2H; -CH=CH-); ¹³C NMR (MeOD), δ ppm: 166.92 (-COOH-), 166.03 (-CO-PA), 163.54 (Ph-CO-), 158.53 (PhC-OH), 134.01(-NHCO-CH=), 131.76 (p-PhC), 129.94 (=CH_{COOH}), 128.82 (o-PhC), 119.25 (m-Ph), 116.77 (PhC-co-), 114.74 (m-PhC-C-OH); IR (KBr pellet, cm⁻¹): νN-H, 3029vs; broad; νC=O, 1704s; νC=C, 1659 s; νC=N, 1610 s; νNC=O, 1525vs; δN-H, 1490vs; νC-OH (phenolic), 1228 s, 1160 s.

2.3 Synthesis of complexes

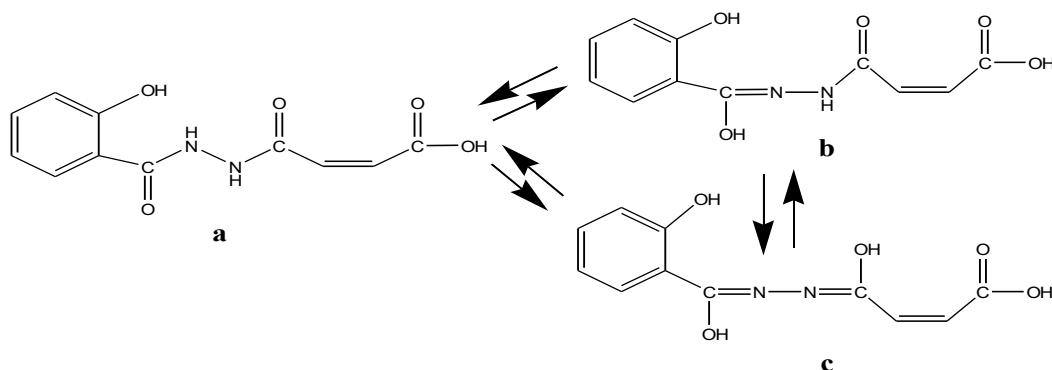
2.3.1 Synthesis of [Fe(H₃L)₂•2H₂O]•3DMF

Solution of H₄L (0.25g, 0.1mmol) in methanol and DMF (2:1), and solution of FeCl₃ (0.135 g, 0.05mmol) in methanol were mixed and stirred for 0.5 h. Then the solution obtained was adjusted to pH = 8-9 by NH₄OH.

Further, the solution was stirred for 1 h and filtered. After slow evaporation of the mother solution within a month, a dark brown precipitate of **1** was obtained from the filtrate in 45% yield.

2.3.2 Synthesis of [Mn(H₃L)₂•2H₂O]•3DMF

The complex was prepared in a manner similar to that used for **1**; a brown precipitate was obtained in 55% yield.


2.3.3 Synthesis of [Cu(H₃L)₂•2H₂O]•3DMF

The complex was prepared in a manner similar to that used for **1**; a dark green precipitate was obtained in 62% yield.

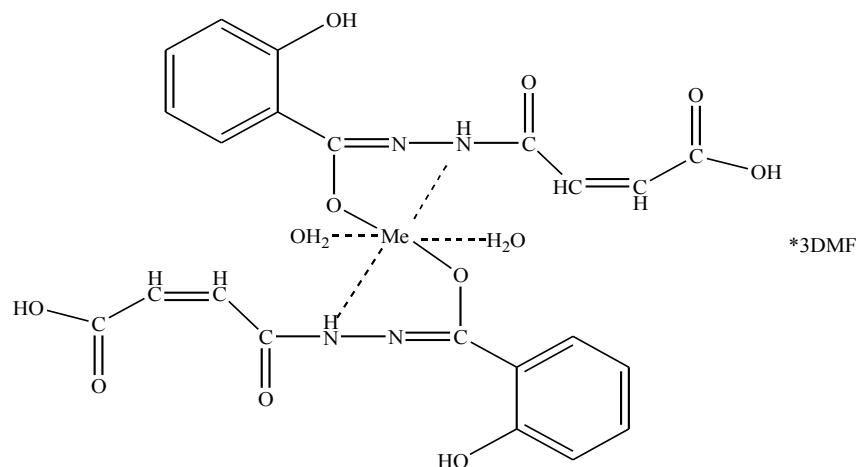
3. RESULTS AND DISCUSSION

The ligand H₄L was obtained by a method different from the one known in literature [10], under relatively mild conditions by reaction of salicylhydrazide with maleic anhydride in a methanol solution. The structure of the prepared hydrazide ligand was

studied by elemental analyses, IR, and ¹H and ¹³C NMR spectral studies. The results obtained are in good agreement with those calculated for the suggested formula, and the melting point is sharp indicating the purity of the prepared ligand (H₄L) (Scheme 1.).

Scheme 1. *H₄L a- diketo-form, b-mono-enol form, c-dienol form*

3.1 Spectral characterization


Note that the IR spectra of the hydrazide ligand contain a strong C=O absorption band at 1704 cm⁻¹ and N-H absorption band at 3029 cm⁻¹. Bands at 1228 cm⁻¹ is assigned to the stretching vibration of v(Ph-O). For all complexes, the absence of stretching band N-H and C=O is consistent with deprotonation of CONH groups and coordination with metal ions in enol form. Also, the characteristic absorptions at 1607 cm⁻¹ indicate the presence of C=N-N=C group (scheme 1-c). The complexing process

involves the oxygen of the carbonyl group of the salicylic residue and the nitrogen atom bonded with the maleic residue. Deprotonation and coordination can also be confirmed by band at 524-534 cm⁻¹ (M-O bonds) and 406-466 cm⁻¹ (M-N bonds) respectively. Note that the absence of carboxyl absorption band is explained by the formation of strong intermolecular hydrogen bonds due between of O (carboxyl group) and H (phenolic), O (carboxyl group) and H (crystallization water).

3.2 Elemental analysis

Elemental analysis data show that Fe²⁺, Mn²⁺ and Cu²⁺ ions form complexes of the composition M(LH₃)₂ (where M is the metal

ion and LH₃ is the singly ionized ligand). Fig. 1.

Fig. 1 The structure of complexes

3.3. Thermal Analysis (TG)

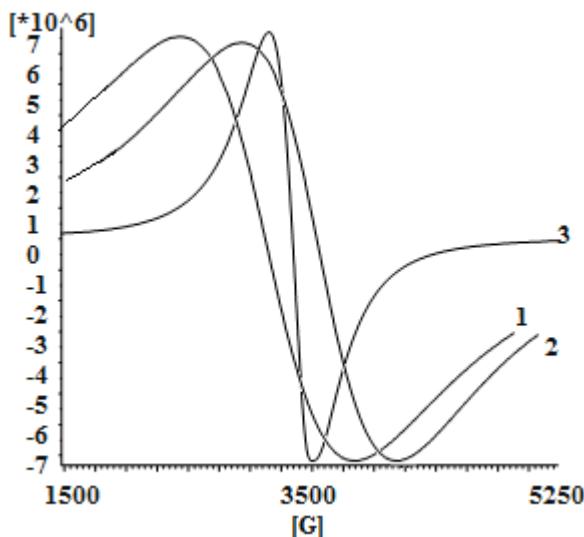
Thermogravimetric analysis showed that the decomposition of compounds occurs in two stages. The main weight loss occurs at the first stage within the temperature range 250-350°C (55-75%, depending on the nature of metal ion); at the second stage within the

temperature range of 400-600°C; the final decomposition takes place to form appropriate oxides. Note that the amount of oxides remaining after the decomposition corresponds to the content of metals in the complexes (Table 1).

Table 1. Some characteristics of synthesized compounds

Compounds	Brutto-formula	T _m , °C	Elemental analysis, % Calc./anal.					M _r , q\mol
			C	H	N	O	M	
I	C ₁₁ H ₁₀ O ₅ N ₂	188	53.4	4.2	10.81	31.59	-	250
			52.8	4	11.2	32	-	
II	C ₂₂ H ₁₈ O ₁₀ N ₄ Fe	>260	47.65	3.25	10.11	28.88	10.11	554
			47.45	3.28	10.02	27.87	11.38	
III	C ₂₂ H ₁₈ O ₁₀ N ₄ Mn	>260	47.75	3.26	10.13	28.93	9.93	552.9
			47.72	3.34	9.49	28.23	11.22	
IV	C ₂₂ H ₁₈ O ₁₀ N ₄ Cu	>260	46.98	3.21	9.96	28.47	11.38	562
			47.01	3.18	9.89	28.28	11.64	

3.4. EPR spectra


The EPR spectra of all complexes in the polycrystalline state are practically symmetrical singlet indicating a high degree of symmetry around the metal ion close to the octahedral one. The intense signals observed in iron and manganese complexes are manifest on high-spin ⁶S ground state of Fe(III) ions

(d⁵-configuration) and Mn(II). The values of ΔH and g-factors for complexes **1** and **2** have values of ΔH = 1400 G and ΔH = 800 G and g = 2.02 and g = 2.014 respectively. As for the Cu(II) complex (**3**), the line width peak to peak is ΔH = 350 G, and the g-factor is 2.12.(fig.2).

3.2. Magnetic susceptibility

The iron complex shows the value of the magnetic moment equal to 5.71 B.M. at room temperature, manganese - 5.90 B.M. and

copper - 1.9 B.M. It revealed that the complexes have magnetic moments in the normal range typical for octahedral complexes.

Fig.2 EPR spectra of complexes **1**, **2**, and **3**.

4. CONCLUSION

$[\text{Fe}(\text{H}_3\text{L})_2 \cdot 2\text{H}_2\text{O}] \cdot 3\text{DMF}$, $[\text{Mn}(\text{H}_3\text{L})_2 \cdot 2\text{H}_2\text{O}] \cdot 3\text{DMF}$ and $[\text{Cu}(\text{H}_3\text{L})_2 \cdot 2\text{H}_2\text{O}] \cdot 3\text{DMF}$ have been prepared on the basis of N'-maleoyl-salicylic hydrazide and characterized by elemental analysis, FT-IR, magnetic susceptibility and thermal analysis. It found that the ligand

behaves as a monoanionic bidentate where the ligand is in the enol form and coordinates with metal ions through the oxygen atoms of salicylic residue and nitrogen atom bonded with maleic residue.

REFERENCES

1. Moon D., Song J., Kim B.J. et al. A novel 18-metallacrown-6 complex: Synthesis, structural characterization and magnetic properties. *Inorg. Chem.* 2004, vol. 11, no. 11, pp. 1919. doi.org/10.1016/j.solidstatesciences. 2009.07.014
2. Lin S., Liu S.X., Chen Z. et al. Synthesis, Structure and Magnetism of a Ferric 24-Azametallacrown-8 Complex. *Inorg. Chem.* 2004, vol. 11, no. 11, pp. 2222. DOI: 10.1021/ic035145w
3. John R.P., Lee K., Suh B.J. et al. Modulation of the Ring Size and Nuclearity of Metallamacrocycles via the Steric Effect of Ligands: Preparation and Characterization of 18-Membered Hexanuclear, 24-Membered Octanuclear, and 30-Membered Decanuclear Manganese Metalladiazamacrocycles with α - and β -Branched N-Acylsalicylyhydrazides. *Inorg. Chem.* 2005, vol. 44, no. 20, pp. 7109. DOI: 10.1021/ic050891h
4. John R.P., Park J., Moon D. et al. Encapsulation of a guest molecule in a strained form: an extended 36-membered dodecanuclear manganese metallamacrocycle that accommodates a cyclooctane in the S_4 symmetry conformation. *Chem. Commun.* 2006, pp. 3699. DOI: 10.1039/B607675K
5. Patole J., Sandbhor U., Padhye S. et al. Structural chemistry and In vitro antitubercular activity of acetylpyridine benzoyl hydrazone and its copper complex against *Mycobacterium smegmatis*. *Bioorg. Med. Chem. Let.* 2003, vol. 13, no. 1, pp. 51.

doi.org/10.1016/S0960-894X(02)00855-7

6. Terzioğlu N., Gürsoy A. Synthesis and anticancer evaluation of some new hydrazone derivatives of 2,6-dimethylimidazo[2,1-*b*][1,3,4]thiadiazole-5-carbohydrazide. *Eur. J. Med. Chem.* 2003, vol. 38, no. 2, pp.781. doi.org/10.1016/S0223-5234(03)00138-7

7. Cocco M.T., Congiu C., Lilliu V., Onnis V. Synthesis and in vitro antitumoral activity of new hydrazinopyrimidine-5-carbonitrile derivatives. *Bioorganic & medicinal chemistry*. 2006, vol. 14, no. 2, pp. 366. doi.org/10.1016/j.bmc.2005.08.012

8. Easmon J., Puerstinger G., Roth T. et al. 2-Benzoxazolyl and 2-benzimidazolyl hydrazones derived from 2-acetylpyridine: A novel class of antitumor agents. *Int. J. of Cancer*. 2001, vol. 94, no. 1, pp. 89. DOI: 10.1002/ijc.1427

9. Walcourt A., Loyevsky M., Lovejoy D.B. et al. Novel aroylhydrazone and thiosemicarbazone iron chelators with anti-malarial activity against chloroquine-resistant and -sensitive parasites. *International Journal of Biochemistry and Cell Biology*. 2004, vol. 36, no. 3, pp. 401. doi.org/10.1016/S1357-2725(03)00248-6

10. Vicini P., Zani F., Cozzini P., Doytchinova I. Hydrazones of 1,2-

benzisothiazole hydrazides: synthesis, antimicrobial activity and QSAR investigations. *Eur J Med Chem*. 2002, vol. 37, no. 7, pp. 64. PMID:12126774

11. Shunsheng Zhao, Sijiao Wang, Xiangrong Liu et al. Synthesis, crystal structures, and selected properties of Cu(II) and Zn(II) complexes with *in situ* formed 2-hydroxy-N'-(propan-2-ylidene) benzohydrazide. *Journal of Coordination Chemistry*. 2012, vol. 65, no. 24, pp. 4277. doi.org/10.1080/00958972.2012.738813

12. Ming-Li Liu, Jian-Min Dou, Da-Cheng Li et al. Synthesis, structural characterization and thermal properties of three copper(II) complexes based on aryl hydrazide ligands. *Transition Met. Chem.* 2012, vol. 37, no. 1, pp. 117.

13. Dacheng Li, Suna Wang, Hui Xu, Yan Yang, Suyuan Zeng, Jinsheng Zhao, Daqi Wang, Jianmin Dou. Supramolecular architectures based on di-, tri- and tetrameric complexes with *N,N'*-diacylhydrazide ligands. *Inorganica Chimica Acta*. 2010, vol. 365, pp. 85. doi.org/10.1016/j.ica.2010.08.032

14. Handong Yin, Jichun Cui, Yanling Qiao. The first 1D tetranuclear organotin (IV) complex with *N*-acylsalicylyhydrazide: Synthesis, characterization and crystal structure. *Inorganic Chemistry Communications*. 2008, vol. 11, no. 6, pp. 684 doi.org/10.1016/j.inoche.2008.03.010

N'-MALEOİL-SALİSİLHİDRAZİD İLƏ Fe(III), Mn(II) VƏ Cu(II) KOMPLEKSLƏRİNİN SİNTEZİ VƏ SPEKTROSKOPİK XÜSUSİYYƏTLƏRİ

¹G.H. Qondolova, ²Ə.Ə. Məcidov, ²P.Ə. Fətullayeva, ²A.İ. İsrafilov

*¹*AMEA Gəncə bölməsi, Ekologiya və Təbii Ehtiyatlar İnstitutu,
Azərbaycan, Gəncə ş., H. Əliyev pr-ti, 153, AZ 2003*

*²AMEA akad. M.F. Nağıyev adına Kataliz və Qeyri-üzvi Kimya İnstitutu
Azərbaycan, Bakı ş., H.Cavid pr-ti, 113, AZ 1143,
e-mail: gulnargondolova@gmail.com*

$Fe(C_{11}H_9N_2O_5)_2(H_2O)_2] \bullet 3(C_3H_7NO)$ (1), $[Mn(C_{11}H_9N_2O_5)_2(H_2O)_2] \bullet 3(C_3H_7NO)$ (2) və $[Cu(C_{11}H_9N_2O_5)_2(H_2O)_2] \bullet 3(C_3H_7NO)$ (3) kompleksləri sintez edilmiş və element analizi, IQ- və EPR spektroskopiya, maqnit həssaslığı və termiki analiz vasitələri ilə tədqiq edilmişdir. Bütün komplekslər təhrif edilmiş oktaedrik quruluş əmələ gətirir. 1, 2 və 3 komplekslərində metal ionları iki liqand molekulunun salisil qalığının oksigen atomu, malein qalığı ilə birləşmiş azot atomu və iki molekul su ilə koordinasiya olunur.

Açar sözlər: sintez, Fe(III), Mn (II) və Cu(II) kompleksləri, termiki analiz, maqnit həssaslığı

**СИНТЕЗ И СПЕКТРОСКОПИЧЕСКИЕ ХАРАКТЕРИСТИКИ КОМПЛЕКСОВ
Fe(III), Mn(II) И Cu(II) С N'-МАЛЕОИЛ-САЛИЦИЛГИДРАЗИДОМ**

¹Г.Г. Гондолова, ²А.А. Меджидов, ²П.А. Фатуллаева, ²А.И. Исрафилов

¹Институт Экологии и Природных запасов, Гянджинское отделение НАНА
Азербайджан, AZ 2003 г. Гянджа, пр-т Г.Алиева, 153

²Институт Катализа и Неорганической химии им. акад. М.Ф.Нагиева, НАНА
Азербайджан, AZ 1143 г. Баку, пр-т Г.Джавида, 113
E-mail: gulnargondolova@gmail.com

Были синтезированы комплексы $Fe(C_{11}H_9N_2O_5)_2(H_2O)_2] \bullet 3(C_3H_7NO)$ (1), $[Mn(C_{11}H_9N_2O_5)_2(H_2O)_2] \bullet 3(C_3H_7NO)$ (2) и $[Cu(C_{11}H_9N_2O_5)_2(H_2O)_2] \bullet 3(C_3H_7NO)$ (3) и охарактеризованы элементным анализом, ИК- и ЭПР спектрами, магнитной восприимчивостью и термическим анализом. Все комплексы показывают искаженную октаэдрическую геометрию. В комплексах 1,2 и 3 ионы металлов координируются с двумя молекулами лиганда посредством двух атомов кислорода салицилого остатка, двух атомов азота, связанных с малеиновым остатком и двумя молекулами воды.

Ключевые слова: синтез, комплексы Fe(III), Mn (II) и Cu(II), магнитная восприимчивость, термический анализ.

Received 12.01.2018.