UDC [541.123.3+536]:546.289'24

PHYSICOCHEMICAL ASPECTS OF TERNARY AND COMPLEX PHASES DEVELOPMENT BASED ON THALLIUM CHALCOHALIDES

D.M. Babanly, D.B. Tagiyev

Acad. M. Nagiyev Institute of Catalysis and Inorganic Chemistry
National Academy of Sciences of Azerbaijan
113, H.Javid Ave., Baku, AZ 1143; e-mail: dunyababanly2012@gmail.com
Recieved 10.05.2018

The results of physical and chemical investigation of some ternary and more complex systems which are of interest in terms of obtaining thallic chalcohalides and new multicomponent phases on their basis have been systematized and analyzed in the review paper. This class of inorganic substances is of scientific and practical interest as promising functional materials with thermoelectric, optical, magnetic, sensor and detector properties. The literature data on crystal structure, thermodynamic and some physico-chemical properties of thallium chalcohalides and intermediate phases on their basis have been investigated.

Keywords: thallium chalcohalides, functional materials, phase diagram, solid solutions, thermodynamic properties, crystal structure.

1. Introduction

Chalcogenides and chalcohalides of heavy metals, including 5p and 6p elements, are in the cenre of attention of world scientists since the middle of the last century due to their interesting chemical bonding characteristics and fascinating physical properties [1-5]. Many of them are applied or considered perspective for application in various fields of electronics and high technologies.

The discovery of research achievements in nanomaterials over the past two-three decades [6,7] and the discovery of graphene [8] and topological insulators (TI) [9-11] have given a powerful impetus to the development of electronics and other high technologies. The discovery of graphene stimulated the search for other graphene-like two-dimensional materials, among which 2D transition metal chalcogenides, due to their unique physical properties, proved extremely promising for use in new generation optoelectronic devices [12-16].

The most important applications of TI materials are new spin-off devices and permanent transistors for quantum computers, based on the quantum spin Hall effect [9-11, 17] and the anomalous quantum Hall effect [18]. These materials are also prospective for application in superior magnetoelectronics, optoelectronics, security systems, and so on

[19-21]. Currently the most widely studied substances like TI are Bi₂Se₃, Bi₂Te₃, Sb₂Te₃ compounds and phases based on them [9-11, 22, 23]. However, recent studies have shown that a number of tetradimide-based compounds formed in A^{IV}-B^V-Te systems also posess interesting TI properties [11, 24-27].

Heavy metal chalcogenides play an important role among the new photoelectric, thermoelectric materials and other energytransducers generated for the use of alternative and renewable energy sources [28-31]. These materials are also used to create highly sensitive sensors and detectors for the implementation of various complex technological processes, as well as, for monitoring environmental safety on Earth in in the atmosphere [7, 32].

Chalcohalogenides of heavy metals, including 5p- and 6p-elements occupy a special place among the above mentioned promising materials for application in many other areas [3, 33-43]. For example, ferroelectric semiconductors of type $B^VXHal(B^V-Sb, Bi, X-S, Se, Te, Hal, Cl, Br, I)$ possess precious photoelectric, magnetic, electrooptic, pyroelectric, pyro-optic and other properties and consiredered to be promising for application as nuclear, γ - and infrared beam

detectors, light modulators, gas sensors, photon crystals, memory elements, etc.[33-35].

It is expected that the Rashba effect, which provides spin manipulation through the electric fields of these materials, will be used in devices proposed as a spin field and spin Hall transistors [36-40]. The most recent materials proposed in this direction are, for example, spin-orbit coupling, ferroelectric semiconductors controlled by electric polarization [41-43].

Over the last decade, the phase equilibrium, thermodynamic properties of B^V-X-I systems have been studied extensively, primary crystallization areas and fundamental thermodynamic functions of intermediate phases, including B^VXI compounds, have been determined [44-48].

Numerous studies have shown that ternary chalcogenides and chalcohalogenides of 6p (Tl, Pb, Bi) and 5p (Sn, Sb) elements have an anomalous low thermal conductivity and high thermoelectric efficiency [29-31].

According to recent studies, thallium chalcogenides and ternary chalcohalide hybrids (Tl_6SeI_4, Tl_6SI_4) have potential applications, such as radiation detectors, and form a new class of inorganic semiconductor detector materials [49-57]. These compounds and phases on their basis are far more promising than CZT $(Cd_{0.9}Zn_{0.1}Te)$ industrial importance - the most sensitive detector material for functional indications, and are one of the most promising materials for new generation electronic devices. Even though the talium compounds are toxic, compounds and intermediate phases containing thallium have an important place among such materials that have unusual electronic properties. It has been established that threedimensional seleno- and thioiodides of thallium have three-dimensional structure (3D) and therefore possess better internal electronic and mechanical properties, demonstrating both high hole and electron conductivity compared to linear (1D) and layered (2D) compounds [49-52].

Tl₆S(Se)I₄ monocrystals were studied, their electron structure, dielectric, optical properties and structure defects examined [53-54]. It has been established that these ternary compounds have higher mechanical strength and optimal band gap value for radiation detectors compared to TlI and Tl₂S(Se) binary compounds that form them.

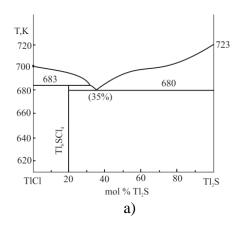
Note that the establishment of scientific basis for the directional search and synthesis of new multicomponent inorganic materials with a combination of physical and physicochemical properties requires a complex analysis of the corresponding systems, their phase diagrams, and the determination of the fundamental thermodynamic functions of the intermediate phases [58, 59]. From this point of view, it is of particular interest to have a complex physical-chemical study of complex systems known to be formed of solid analogues or solid solutions based on known binary and triple compounds with valuable application properties. Therefore, physicochemical investigation of complex systems composed of structure analogs of known binary and ternary compounds with valuable application properties or solid solutions based on them is of particular interest.

The review article summarized and comparatively analyzed the literature data and experimental results obtained by the authors on the ternary Tl-X-Hal systems, Tl₂Te-TlHal-TlHal and Tl₅Te₃-Tl₉BiTe₆-Tl₅Te₂Hal concentration ranges of the Tl-X-X'-Hal və Tl-X-Hal-Hal (X,X'-S,Se,Te; Hal,Hal'-Cl,Br,I) quaternary systems, and on the phase equilibria, thermodynamic, crystallographic and some physicochemical properties of the complex thallium chalcohalogenide systems.

2. Phase equilibria in the Tl-X-Hal (X-S, Se, Te, Hal -Cl, Br, I) systems and some physico-chemical properties of intermediate phases

Initial researches on Tl-X-Hal (X-S, Se, Te, Hal -Cl, Br, I) systems began in the 1980-s

with the stydy of Tl₂X-TlHal and TlX-TlHal quasibinary sections.


2.1. Phase equilibria in the Tl - S - Cl (Br,I) systems

Tl-S-Cl system. TlCl-Tl₂S quasi-binary section of this system is of peritectic type [60, 61] and forms a congruently melted Tl₆SCl₄ ternary compound at 683 K (Fig. 1, a). In [62], the system was re-visited, formation of the Tl₆SCl₄ peritectic ternary compound was confirmed and coordinates of the peritectic and eutectic equilibriums were found to be essentially different from the results of the [60.61] (Fig.1, b). In contrast to [60,61], existence of the immiscibility area (~13-50 mol% Tl₂S) of two liquid phases has been

established [62].

The system was studied at the Tl-TlCl-S concentration range by means of DTA, X-ray and SEM analysis, as well as through the measurement of microhardness and EMF. A series of polythermal and isothermal sections, liquidus sufrace projection of its phase diagram was constructed [62-64].

It found that TlCl-S system is also a quasibinary, forming a phase diagram with a monotectic and degenerated eutectic equilibrium near the sulfur [63].

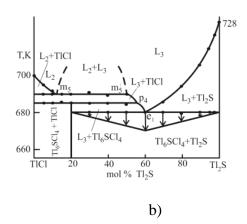
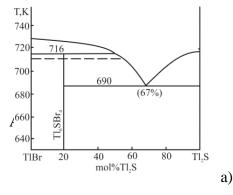



Fig 1. Phase diagram of the system TlCl-Tl₂S: a) - [61], b) - [63]

Tl-S-Br system. TlBr-Tl₂S and TlBr-S sections of this ternary system are quasi-binary [65,66]. According to [60], TlBr-Tl₂S system is characterised by formation of incongruently melting ternary Tl₆SBr₄ compound at 716K (Fig.2,a). The phase equilibrium in the system was re-examined; the formation of the above mentioned ternary compound proved, and coordinates of nonvariant equilibria specified (Fig. 2,b) [66].

TlBr-S system is of monotectic and degenerated eutectic type. Tl - S - Br ternary system was investigated at the Tl-TlBr-S concentration range, some isopleth sections and the projection of the liquidus surface of its phase diagram were constructed, types and coordinates of non- and monovariant equilibria determined [65,66].

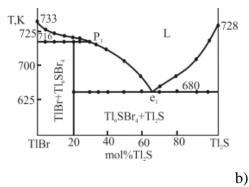


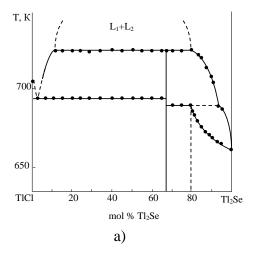
Fig.2. Phase diagram of the system TlBr-Tl₂S: a) - [61], b) - [67]

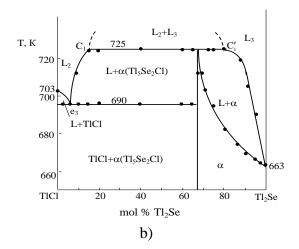
Tl - S - I system. $TlI-Tl_2S$ quasi-binary section is characterized by formation of ternary Tl₆SI₄ compound melting congruently at 713K, and a phase of the Tl₃SI composition that is stable at 640-670K temperature intervale [61]. According to the results of [60], Tl₆SI₄ melts congruently at 710K and has a ~4 mol % (according to [67,68] ~2 mol %) homogeneity area [69] report that, Tl_6SI_4 Tl_3SI congruently at 710K, incongruently at 673K by peritectic reaction.

The latter decomposes at 653K according to solidphase reaction into Tl_2S and Tl_6SI_4 compounds.

The full description of phase equilibria of the Tl-S-I ternary system is given in the Fig.3 [65,69,70]. Three polythermic sections (TlI-Tl₂S, TlI-S və Tl₆SI₄-Tl) of this system are quasi-binary. TlI-S and Tl₆SI₄-Tl systems are characterized by monotectic and eutectic equilibriums.

Fig. 3. The projection of the liquidus surface of the system Tl-TlI-S. Primary crystallization areas: $1-\text{Tl}_2\text{S}$, $2-\text{Tl}_4\text{S}_3$, 3-TlS, $4-\text{Tl}_3\text{SI}$, $5-\text{Tl}_6\text{SI}_4$ (γ), $6-(\text{TlI})_{\text{II}}$, $7-\text{Tl}_2\text{I}_3$, $8-\text{TlI}_3$, 9- I₂, 10-Tl, 11-S and $12-\text{Tl}_2\text{S}_5$

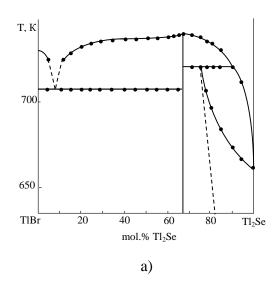

There are 2 immiscibility areas in the system Tl-S-I. Monovariant eutectic and peritectic equilibrium curves are transformed into nonvariant monotectic equilibria while

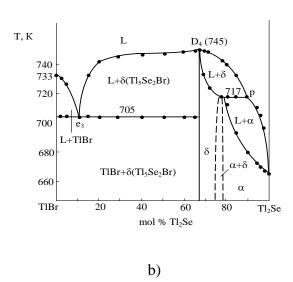

intersecting this immiscibility regions (Fig.3 - M_1M_1' , M_2M_2' , M_3M_3' , M_4M_4' , M_5M_5' conjugate pairs).

2.2. Phase equilibria in the Tl - Se - Cl (Br,I) systems

Tl - Se - Cl system. A ternary compound Tl_5Se_2Cl melting by sintectic reaction at 725K is formed in the first version of the Tl_2Se -TlCl phase diagram [71] (Fig.4a). This compound is in eutectic equilibrium with TlCl, and in peritectic equilibrium with Tl_2Se . The homogeneity area of Tl_2Se at the peritectic reaction temperature is ~ 20 mol%. The T-x diagram of this system constructed by [72]

(Fig. 4,b) is consistent at 0-66.7 mol% Tl₂Se composition intervale with results of [71]. However, results obtained by [72,73] at the Tl₅Se₂Cl-Tl₂Se composition range differs qualitatively from those given in [71] and is characterized by formation of continious solid solutions. Note that this agrees with the fact that the primary constituents of the sub-system Tl₅Se₂Cl-Tl₂Se are iso-structural (see section 3).


Fig. 4. Phase diagram of the system $Tl_2Se-TlCl: a) -[72], b) - [73]$


TlSe-TlCl section is also quasi-binary and forms a phase diagram having monotectic and eutectic equilibria [60]. The Tl-S-Cl ternary system was studied in detail at the Tl-TlCl-Se concentartion interval, and some izopleth sections, izothermal section at 400K, as well as the projection of the liquidus surface of its were constructed [72-76].

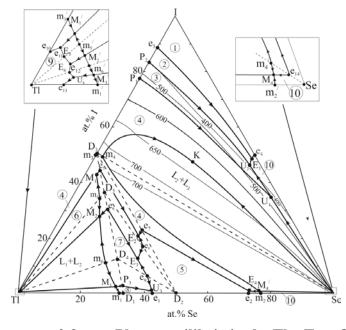
Tl - Se - Br system. $TlBr-Tl_2Se$ system forms a congruently melting ternary compound Tl_5Se_2Br [71] (Fig.5a). It is stoichiometric to be in eutectic equilibrium with TlBr (~10 mol% Tl_2Se , 705K), and in peritectic equilibrium with Tl_2Se (~90 mol% Tl_2Se , 720K). There is a wide solid solution

area (75-100 mol% Tl₂Se, 720K) based on Tl₂Se [71]. New phase diagram [73,77] of the system TlBr-Tl₂Se coincides with the results of [71] at the TlBr-Tl₅Se₂Br composition interval, whereas it differs considerably from it at the Tl₅Se₂Br-Tl₂Se interval (Fig.5b). According to [71], Tl₅Se₂Br forms a large (66.7-75 mole% Tl₂Se) solid solution area. The results of Ref. [71] agree with the results of Ref. [78-80] that Tl₅Se₂Br is of variable composition.

Experimental results in the Tl-TlBr-Se concentration range were summarized, some polythermal and isotermal sections, liquidus surface projection constructed in Ref. [77].

Fig.5. Phase diagram of the system $Tl_2Se-TlBr: a) - [72], b) - [78]$

TI – Se –I system. The phase equilibria Tl-Se-I ternary system was investigated in a whole concentartion range [60, 65, 71, 81-86]. Both ternary compounds -Tl₅Se₂I and Tl₆SeI₄ detected in the Tl-Se-I system are formed on the TlI-Tl₂Se section [60, 71, 83-84]. Tl₅Se₂I melts congruently at 720K, Tl₆SeI₄ melts by peritectic decomposition at 705K [71]. Tl₅Se₂I has a wide hogeneity region and is in peritectic equilibrium with Tl₂Se. However, according to the results of [60], both compounds are nonstoichiometric phases which melt congruently.


A re-study of the TII-Tl₂Se system [83,84] confirmed the existence of congruently melting ternary compounds Tl_5Se_2I (720K) and Tl_6SeI_4 (705K).

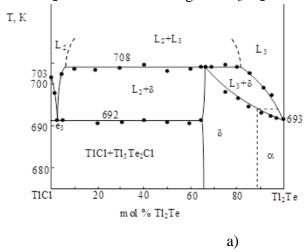
TlSe–TlI [60], TlSe–Tl $_5$ Se $_2$ I and TlSe–Tl $_6$ SeI $_4$ [84,85] polythermal sections of the system Tl–Se–I are quasi-binary and form eutectic phase diagram. TlI-Se [86], Tl $_5$ Se $_2$ I-Tl [84] və Tl $_6$ SeI $_4$ -Tl [84] polythermal sections are also quasi-binary and characterized by monontectic and degenerated eutectic equilibriums.

The projection of the liquidus surface of the system Tl-Se-I is given by the Ref. [65,84].

It consists of 10 primary crystallization areas (Fig.6). Liquidus surfaces of the elemenetal Tl and Se are degenerated on the relevant vertices of a concentration triangle. The largest area of crystallization belongs to the high temperature modification of thallium monoiodide - (TlI)_{II}. This compound involves most non- and monovariant equilibriums in the Tl-Se-I system.

Tl-Se-I system is divided into 8 subsystems by 7 quasi-binary sections (Fig.6, dashed lines). 3 of those sub-systems (Tl-TlI-Tl₆SeI₄, Tl-Tl₆SeI₄-Tl₅Se₂I, TlI-TlSe-Se) are characterized by nonvariant monotectic and eutectic equilibria, two of them (TII-Tl₆SeI₄-TlSe, Tl₆SeI₄-Tl₅Se₂I-TlSe) are of eutectic type, one - Tl₂Se-Tl₅Se₂I-TlSe is of transition type, and one - Tl-Tl₂Se-Tl₅Se₂I is of monotectic and transition types. The latter system - TII-Se-I covers half of the concentration triangle and reflects a series of nonmonovariant equilibria. hogeneity areas and dissociation in the liquid the Tl₅Se₂Hal and $Tl_6S(Se)I_4$ of compounds comprehensively studied are [61,67,68,78-80].

Fig.6. The projection of the liquidus surface of the system Tl-Se-I. Primary crystallization areas: $1-I_2$, $2-TlI_3$, $3-Tl_2I_3$, $4-(TlI)_{II}$, 5-TlSe, $6-Tl_6SeI_4$, $7-Tl_5Se_2I$ (δ-phase), $8-Tl_2Se$ (α-phase), 9-Tl, 10-Se.


2.3. Phase equilibria in the Tl - Te - Cl (Br, I) systems

Tl-Te-Cl system. Phase equilibria in this system were studied by $TlCl-Te(TlTe,Tl_2Te_3)$, $Tl_5Te_2Cl-Te_3$

 $Tl(TlTe,Tl_2Te_3,Tl_5Te_3)$ polythermal sections [73,76,87-89]. The further study of phase equilibria in the Tl-TlCl-Te composition area

was carried out by [90-92], a number of polythermal sections, the projection of a liquidus surface of the system constructed, types and coordinates of non- and monovariant equilibriums determined.

TlCl-Tl₂Te quasi-binary section is characterized by formation of ternary Tl₅Te₂Cl that melts incongruently by syntectic reaction at 708 K [90,92]. The aliquation area at this temperature ranges between ~7-85 mol% Tl₂Te concentration region. Tl₅Te₂Cl is

in eutectic equilibrium with TlCl, whereas it is a solid solution area with Tl₂Te (Fig. 7,a).

The main feature of the system Tl-TlCl-Te is the existence of a wide immisciblity areas on the basis of 3 different liquid phases. These aliquaition fields cover more than 90% of the Tl-TlCl-Te concetration triangle. There is a wide triple immiscibility region which is surrounded by corresponding double immiscbility areas [92].

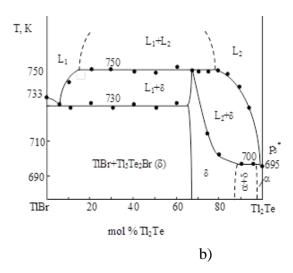


Fig. 7. Phase diagram of the systems TlCl-Tl₂Te (a) [94] and TlBr-Tl₂Te (b) [97]

Tl - Te - Br system. This system was studied in the Tl-TlBr-Te composition area [87, 89, 91, 93-95]. It revealed that the only quasi-binary section of this system - TlBr-Tl₂Te forms a phase diagram with syntectic, eutectic and peritectic equilibriums. Tl_5Te_2Br melts by syntectic reaction at 750K. Its homogeneity area occupies 66.7-87 mol% Tl_2Te concentration interval [91,95] (Fig. 7,b).

TlBr-Te system is quasi-binary, whereas TlBr-TlTe(Tl_2Te_3), Tl_5Te_2Br -TlTe, Tl_5Te_2Br -Tl $_5Te_3$ isopleth sections are stable in subsolidus. The latter forms a continuous series of solid solutions.

The projection of the liquidus surface consists of 5 fields which agrees with the primary crystallization of the TlBr, δ -phase, TlTe, Tl₂Te₃ and elemental Te [95]. Formation of the triple immiscibility area in the system is due to the presence of extensive double immiscibility areas on all sides of the Tl-TlBr-Tl₂Te subsystem. The triple immiscibility area is chracterized by the nonvariant syntectic $L_1+L_2+L_3 \rightarrow \delta$ reaction.

In Ref. [96-102] ternary compounds Tl₂TeBr(I)₆ were detected, their homogeneity areas defined and some properties of their moncrystals examined.

Tl - Te - I system was investigated in a whole concentration interval.

TII-Tl₂Te quasi-binary section forms a ternary Tl₅Te₂I compound meltig at 775K by syntectic reaction [60]. Tl₅Te₂I is a phase of variable composition and has a \sim 10 mol % homogeneity region along the TII-Tl₂Te system (Fig.8).

Tl₂TeI₆ compound melting congruently at 700K was detected on the TlI-TeI₄ quasibinary section, its crystal structure and some physical properties were studied [97-102]. New option of the TlI-TeI₄ phase diagram [108] differs from the one described in Ref. [100] by melting temperature of Tl₂TeI₆ - 654K.

T-x-y digram of the Tl-Te-I system is given in [105-110]. It found that TlI-Te, TlI- Tl_2Te , TlI- TeI_4 , Tl_2TeI_6 -Te and Tl_2TeI_6 -I polythermal sections are quasi-binary. The

phase diagram of the TlI-Tl₂Te system has been specified by [98]. The results obtained are close to [60].

The solid-phase diagram of the Tl-Te-I system at 300K reflects 2 ternary compounds

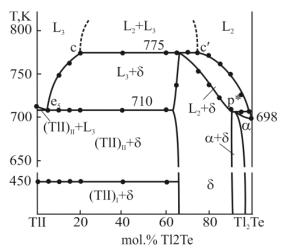
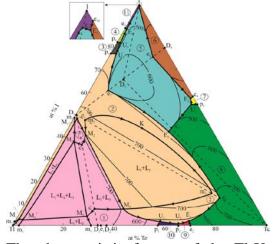


Fig. 8. Phase diagram of the system TII–Tl₂Te

(Tl₅Te₂I; Tl₂TeI₆) and their equilibria with other phases. There is a wide homogeneity

area based on Tl₅Te₂I, however Tl₂TeI₆ has

almost a stoichiometric composition.


Projection of the liquidus surface consists of 11 primary crystallization areas (Fig.9) [108]. Liquidus surfaces of the elemental Tl and α -phase based on Tl₂Te are degenerated.

To sum up, let's look at characteristic features of phase equilibria in the Tl-X-Hal systems.

6 ternary compounds of the type Tl_5X_2Hal (in all Se and Te containing), 4 compounds of the type Tl_6XHal_4 (in all S containing systems) and Tl_2TeHal_6 compounds have been detected in the Tl-X-Hal systems. It revealed that all compounds, except for the

latter ones, are formed on the $TlHal-Tl_2X$ quasi-binary sections. Tl_5X_2Hal compounds decompose incongruently by syntectic reaction except for the Tl_5Se_2I and Tl_5Se_2Br that melt congruently. Tl_6XHal_4 compounds melt congruently (Tl_6SI_4 and Tl_6SeI_4) or by peritectic decomposition.

Tl₅X₂Hal compounds are phases of variable composition possessing a wide homogeneity area, whereas Tl₆XHal₄ and Tl₂TeHal₆ compounds are practically stoichiometric. Crystal structures of all three types of compounds are discussed in the next section.

The characteristic feature of the Tl-X-Hal systems is the existence of wide immiscibility areas in a liquid state. There are

Fig.9. Liquidus surface projection of the system Tl-Te-I. Primary crystallization fields: 1- δ phase, 2- (TlI)_{II}, 3-Tl₂I₃, 4-TlI₃, 5-Tl₅Te₂I, 6-TeI₄, 7-TeI, 8-Te, 9-Tl₂Te₃, 10- TlTe, 11- I₂

triple immiscibility areas together with double ones in the 6 systems out of the 9 Tl-X-Hal systems. The comparative analysis of the liquidus surfaces shows that the character phase of equilibria changes regularly in three directions of $S \rightarrow Se \rightarrow Te$ and which is due to changes in the nature of chemical bonding in these systems.

Criteria of aliquation was revealed in the T1-X-Hal ternary systems as a result of the comparative analysis of T-x diagrams of more than 50 quasi-binary and quasi-stable sections [109, 110]. It showed that there is an immiscibility area in the systems when the

degree of ionisation (DOI) is more that 17, and the systems with DOI <16-17 don't demostrate aliquation.

To summarize, there is a rare case of practice in the Tl₅X₂Hal-Tl₂X and Tl₅Te₂Hal-Tl₅Te₃ sections of the Tl-X-Hal systems. Despite presence of extensive the immiscibility areas in liquid state, these systems are characterized by formation a wide continuous solid solution areas subsolidus.

3. Crystal structure and some physico-chemical properties of thallium chalcohalides

The literature data on the crystal structure and some physico-chemical properties of tallium chalco-halides are discussed in this section. As mentioned above (section 2), there are 3 types of ternary compounds in Tl-X-Hal systems: Tl₅X₂Hal, Tl₆XHal₄ and Tl₂TeHal₆. Crystal lattice types and parameters of those compounds are listed in the Table 1.

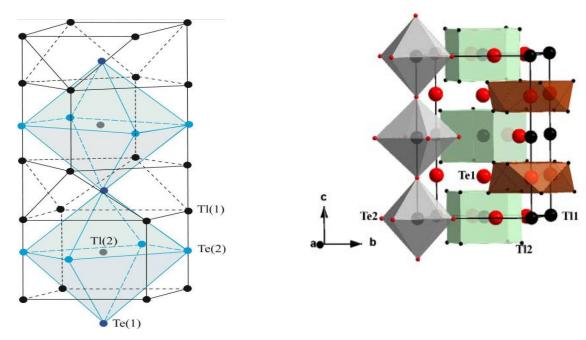
Tl₅X₂Hal compounds are crystallized in a tetragonal lattice of the Tl₅Te₃ type. The crystal structure of Tl₅Te₃ has been analyzed in a number of studies [111-114] following which this compound is crystallized in a tetragonal structure of the Cr₅B₃ type (Sp.gr. I4/mcm). In the unit cell there are 4 formula units (z = 4).

The main structural elements of the Tl₅Te₃ crystal lattice (Fig. 10) are tellurium octahedra in which tellurium atoms have two different positions: part (Te1) is located at two opposite vertices of octahedra along the c axis, and the other part (Te2) occupies remaining positions.

Thallium atoms are also subdivided into 2 types according to their positions in the crystal lattice: one part of the cations - Tl (1) is located in equivalent positions with a multiplicity of 16, and another part - Tl (2) - in positions with a multiplicity of 4. Chemical composition of the unit cell is Tl₁₆Tl₄Te₈Te₄. Considering the electroneutrality condition, it can be assumed that in positions with a multiplicity of 4, the Tl⁺ and Tl³⁺ cations alternate and the unit cell can be represented as $Tl_{16}[(Tl_{0,5}^{1+}B_{0,5}^{3+})Te_3]_4$. Linking to the verti-

ces, the octahedra form a skeleton of the com-

position Tl₄Te₁₂ or (TlTe₃)₄ (Fig. 10, a). Thallium prisms are formed around the octahedra, and antiprisms of thallium are formed around the anions at the vertices of the octahedra, which bind the octahedra along the c axis. Prisms and anti-prisms are alternated along the c axis. These structural elements create a structure of the Tl₅Te₃ type with the chemical composition of the cell Tl₁₆(TlTe₃)₄ (Fig. 10, b).


Due to the above mentioned features of the crystal lattice, Tl₅Te₃ forms a series of cation- and anion-substituted derivatives. Typical representatives of cation-substituted ternary analogues of Tl₅Te₃ are compounds of the types Tl₉BTe₆ (B-Sb, Bi, In, Au, rare earth elements) [115-119] and Tl₄ATe₃ (A-Sn, Pb, Cu, Mo, Nd) [115,118, 120-122].

 Tl_4ATe_3 and $Tl_{16}[A^{2+}Te_3]_4$ compounds are formed when all the thallium atoms in the centers of the octahedra (Tl2) are replaced by the A²⁺ cations. Replacement of half of the Tl atoms located in the vacancies of octahedra (Tl2), with B³⁺ cations leads to the formation of Tl₉BTe₆ compounds [117].

The crystal structures of Tl₅X₂Hal compounds - anion-substituted derivatives of Tl₅Te₃ were studied in detail. According to the available data (Table 1), all these compounds, with an exception of Tl₅Se₂Cl (Sp.gr P4 / ncc), belong to the spatial group I4 / mcm. Se or Te atoms located at two opposite vertices of the octahedra are replaced by halogen atoms in the crystal lattices of these compounds.

The interesting aspect of the anion replacement is that it enables formation of solid solutions at the composition interval $Tl_5Te_{3-x}Hal_x$ (0<x≤1). Meantime, Tl gradually changes its oxidation state by switching to Tl⁺ and provides electroneutrality. The analysis of the Tl₅Te₃ type structures show that both Tl₅Te₃ and Tl₅Se_{3-x} compounds, as well as

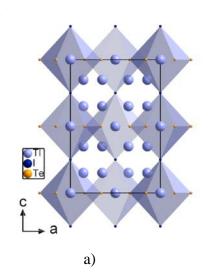
their structural analogues are phases of variable composition with a wide one-sided homogeneity areas.

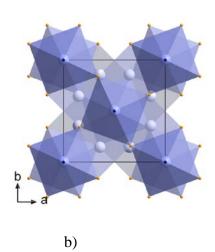
Fig.10. Crystal structure of Tl_5Te_3 . The main structural element (a), the projection along the surfaces b, c (b)

Table 1. Crystal lattice parameters of Tl₅Te₃ and tallium chalcohalides

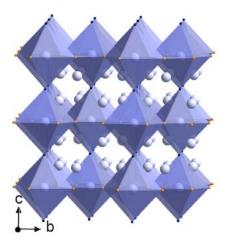
Compound	Syngony,	Lattice parameters, Å	Reference
	Space Group	_	
Tl_5Te_3	Tetragonal, I4/mcm	a=8.930; c=12.598; z=4	[114]
Tl_6SI_4	Tetragonal, P4/mnc	a=9,176; c=9,608; z=2	[61,82]
Tl_6SBr_4	" <u> </u>	a=8,721; c=9,328; z=2	[61,82]
Tl ₆ SCl ₄	""	a=8,830; c=9,170; z=2	[61,82]
Tl ₆ SeI ₄	" <u> </u>	a=9,178; c=9,675; z=2	[81,82]
Tl_5Se_2I	Tetragonal, I4/mcm	a=8,663; c=13,463; z=4	[71]
Tl ₅ Se ₂ Br	""	a=8,594; c=12,788; z=4	[123]
Tl ₅ Se ₂ Cl	Tetragonal, P4/ncc	a=8,565; c=12,741; z=4	[123]
Tl_2TeI_6	Monoclinic, $P2_1/c$	a=7,765; b=8,174; c=13,756;	[102]
		$\beta = 124, 2^{0}; z = 2$	
Tl_2TeBr_6	Tetragonal, P4/mnc	a=7,468; c=10,682; z=2	[102]
Tl_2TeCl_6	Cubic, Fm-3m	a=10,107; z=4	[124]
Tl_5Te_2I	Tetragonal, I4/mcm	a=9.001; c=13.291; z=4	[108]
Tl_5Te_2Br	Tetragonal, I4/mcm	a = 8.974; $c = 12.812$; $z = 4$	[125]
Tl ₅ Te ₂ Cl	Tetragonal, I4/mcm	a = 8.921; $c = 12.692$; $z = 4$	[90,92]

Crystal structure of Tl₅Se₂Hal compounds was studied, their lattice parameters, and positions of atoms in the unit cell determined [71,123]. All of them are crys


tallized with the In_5Bi_3 structure which is a subfamily of the Cr_5B_3 type: $Tl_5Se_2I(Br)$ is crystallized in the space group 14/mcm, Tl_5Se_2Cl as a lower symmetric distorted vari-


ant in *P4/ncc*. Around one central thallium atom there are slightly distorted octahedra of two halogen and four selenium atoms occur. These octahedra are covered by cubes of thallium atoms. The octahedra are interconnected via common vertices and the cubes via common edges to give the three-dimensional structure [123].

The crystal structure study of Tl₅Te₂Cl(Br) compounds was carried out by the Rietveld method based on powder X-rays analysis. The unit cell parameters and isotropic atomic positions of the atoms were refined by TOPAS-4.2 program [90,125].


Based on the phase diagram of the Tl-Te-I system, it was proposed and implemented

an original method of growing single crystals of Tl_5Te_2I which melts incongruently by syntectic reaction [65,126]. The method has been used in order to control the crystallization process from two immiscible liquid phases L_1 + L_2 . In this method the liquid phase L_1 was in dynamic equilibrium with another liquid phase and the compositions of the coexisting liquid phases always constant at the given temperature. During very slow crystallization from the L_1 , the phase L_2 gradually dissolves in L_1 , and provides constancy of its composition to form consequently the Tl_5Te_2I by the syntectic reaction at 775 K according to phase diagram.

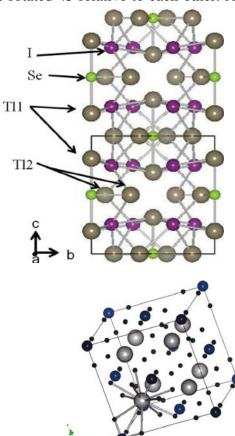

Fig.11. Crystal structure of Tl_5Te_2I : a) view along the [010] direction; b) Projection along the c-axis. Tl1 atoms in lighter color.

Fig. 12. Perspective view of Tl₅Te₂I showing a layer of Tl₅Te₂I corner-sharing octahedral. Color codes like in Fig. 11 and Tl1 atoms in lighter color

Single crystal X-ray diffraction data was collected at room temperature on a STOE StadiVari diffractometer. The structure was refined using as starting model that of Tl₅Te₃; refinement performed with the program system JANA2006. All atoms were refined with occupancies according to the stoichiometric formula, anisotropic thermal displacement parameters and without any constrain. Images of chemical structure were visualized using VESTA software. Full crystal structure details, data collection and structure refinement details are given in [108]. The structure can be described as layers of corner sharing TlTe₄I₂ octahedral (Tl2 central atom) with additional interstitial Tl1 atoms with trigonal prism coordination. Octahedra consecutive along the c-axis are rotated 45 relative to each other. A projection along the [010] and [001] directions, and perspective view of the structure are shown in the Fig. 11 and 12 [127] reported formation mechanism of the anion- and cation substituted anologs of Tl₅Te₃ takes into consideration structural properties of this compound and the electronic structure of thallium. The rational content of these analogues Tl₄BX₃, Tl₉BX₆ and Tl₅X₂Hal was justified, and the reasons for their one-sided stoichiometry determined.

 Tl_6SHal_4 and Tl_6SeI_4 (Hal– I,Br,Cl) ternary compounds are crystallized in a tetragonal lattice of the type Tl_4HgBr_6 [61,81,82] (Fig.13). There are two distinct crystallographic sites for Tl cations. Each Tl^+ ion is coordinated with four Hal– ions and one (S^2 -) Se^2 ion.

Fig. 13. The crystal structure of Tl₆SeI₄. Two distinct sites for Tl ions are shown as Tl1 and Tl2, respectively [50].

Fig.14. The unit cell of Tl₂TeBr(I)₆ compounds. Tl cations are shown by a large gray circles, Te atoms – by dark blue circles and the halogen atoms – by small circles.

The synthesys, identification of the homogeneity areas, growth of monocrystals and study of some properties of the Tl_2TeHal_6 (Hal – I,Br) compounds are reported in [96-102,128-130]. The crystal structure of $Tl_2TeBr_6(I_6)$ compounds was studied in Ref. [98,102] (Fig.14). Both compounds are crys-

tallized in a crystal lattice of the K₂PtCl₆ type. Tl₂TeCl₆ ternary compound crystallize in a cubic unit cell [124] (Table 1).

The methods for the synthesis and monocrystal growth, and some physicochemical properties of the Tl_6XHal_4 and

Tl₅Se₂Hal chalcohalides were analyzed in Ref. [66,67,78,131,132].

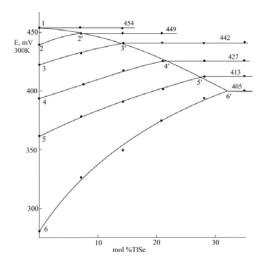
The 3D homogeneity areas were defined and some electrophysical properties of Tl₆SI₄

and Tl₆SeI₄ monocrystals examined in [131,132].

4. Thermodynamic propertis of thallium chalcohalides and related phases

The fundamental thermodynamic characteristics of substances are important to ensure the effectiveness of thermodynamic calculations for optimization of various processes, in particular, conditions for the synthesis and growth of crystals [133, 134].

Thermodynamic propertis of intermediate phases in the Tl-X-Hal systems were excamined through the EMF measurements of the concentration chains


(-) Tl (solid) | gluserol + KlCl + TlCl | (Tl-X-Hal) (solid) (+) (1)


In the chains of type (1), metallic thallium was used as the left electrode, while equilibrium alloys of the Tl-X-Hal systems were used as the right electrodes. A saturated glycerin solution of KCl with the addition of 0.1 mass% TlCl was used as an electrolyte. EMF was measured by the compensation method in the temperature range of 300–430 K and in the 300-380K temperature intervals for sulphur containing systems.

Compound	$-\Delta_f G^0(298K)$	$-\Delta_f \mathrm{H}^0(298K)$	$S^{0}(298K),$	Reference
	$(\mathbf{kJ \cdot mol}^{-1})$		$(\mathbf{J} \cdot \mathbf{mol}^{-1} \cdot \mathbf{K}^{-1})$	
Tl_6SI_4	601.7±2.5	595.1±4.0	672±10	[69]
Tl ₆ SBr ₄	767.0±2.9	790.3±5.2	644±9	[65]
Tl ₆ SCl ₄	833.5±3.7	928.1±14.0	599±9	[64,65]
Tl ₆ SeI ₄	613.1±1.5	609.7±2.6	671±5	[84]
Tl_5Se_2I	341.7±0.8	345.3±2.5	449±8	[84]
Tl ₅ Se ₂ Br	374.3±1.0	384.3±2.7	447.6±6.4	[77]
Tl ₅ Se ₂ Cl	392.8±1.1	421.6±5.1	433.9±7.2	[72]
Tl_5Te_2I	300.4±1.3	301.1±2.3	475.8±6.6	[104]
Tl_5Te_2Br	340.6±1.6	344.5±2.7	483.4±6.2	[95]
Tl ₅ Te ₂ Cl	355.9±1.1	377.1±5.0	474.1±6.8	[92]

The homogeneity areas of phases were refined, the relative partial molar functions of thallium in alloys and the integral thermodynamic functions of thallium chalcohalides and solid solutions based on them calculated on the basis of the results of EMF measurements of the chains type (1). The standard thermodynamic functions of formation and the standard entropies of ternary thallic chalco-halides are summarized in the Table 2.

The results of EMF measurements devoted to the determination of homogeneity areas of the Tl_5X_2Hal compounds and calculation of thermodynamic functions of solid solutions are presented and discussed in [84,104,135-138]. As an example, Fig. 15 presents the data of [138] on the refinement of the homogeneity region of the Tl_5Se_2Br compound.

Fig.15. Application of the EMF method for the determination of homogeneity area of Tl₅Se₂Br compound [138]. a) the concentration dependence of the EMF of chains type (1) for alloys along the ray lines from the vertex TlSe b) a fragment of the phase diagram of the Tl-Se-Br system at 300 K.

The relative parsial thermodynamic functions of tallium in the $Tl_5Te_2Br_xI_{1-x}$ solid solutions at 298K were calculated and their dependence graph upon concentration constructed. It has been established that formation of solid solutions in the $Tl_5Te_2Br-Tl_5Te_2I$ system is not accompanied by significant energy and structural changes, and the formed δ -phase is a solid solution of substraction type [139].

The standard thermodynamic functions of formation and atomization, as well as standard entropies of tallium chalcocahalides and variable phases on their base were calculated on the basis of partial thermodynamic functions of thallium using phase diagrams [140].

By using **EMF** measurements regulated complex of thermodynamic properties for the Tl₆SBr₄ compound was obtained. The data regarding thermodynamic properties of all thallium chalco-halides were systematized comparatively analyzed. Some correlations between thermodynamic functions of thallium chalco-halides and their binary constituents, as well as the ionization degree of chemical bonding were revealed [141,142].

5. Phase equilibria and physico-chemical properties of intermediate phases in some multi-component systems containing thallium, chalcogen and halogen

Some concentration areas of the Tl- X-X'-Hal and Tl-X-Hal-Hal' (X,X'- chalcogen; Hal,Hal'- halogen) four-component systems are of a significant interest in terms of search and development of scientific basis for designing new multicomponent phases based on thallium chalcohalides. Another way for varying the properties of ternary compounds is

to investigate the phase equilibrium in systems composed of them and their structural analogues. In this regard, Tl₅Te₂Hal-Tl₉B^VX₆ and Tl₅Te₃-Tl₅Te₂Hal-Tl₉B_VX₆ systems are very interesting, since all initial constituents of these systems are isostructural thermoelectrics possessing a low thermal conductivity [29].

5.1. Tl-X-X'-Hal(X, X'-chalcogen, Hal-halogen) systems.

The phase equilibria in the systems Tl₂S-Tl₂Se-TlI(Br) were studied, some polythermal sections and the liquidus surface projections of these systems constructed [143,144]. It was shown that, the Tl₆SI₄-Tl₆SeI₄ [145,146] and Tl₂S-Tl₅Se₂I [147] quasi-binary sections divide the Tl₂S-Tl₂Se-TlI system into 3 sub-systems. The Tl₂S-Tl₂Se-Tl₅Se₂I subsystem is of monotectic eutectic type [143] due to the formation of continuous solid solutions along the Tl₆SI₄-Tl₆SeI₄ section [145].

3 monocrystals of the Tl₆SI₄-Tl₆SeI₄ solid solutions were grown by direct crystallization and their some physicochemical properties studied [148].

The physicochemical interaction of components in the TII-Tl₆SI₄-Tl₆SeI₄ system was studied by means of DTA and X-ray analysis, the projection of the liquidus surface and the TII–Tl₆S_{0,5}Se_{0,5}I₄ polythermal section of the system were constructed [149]. The monovariant eutectic $L\rightarrow\alpha+\beta'$ equilibrium curve of the TII–Tl₆S_{0,5}Se_{0,5}I₄ system is calculated based on mathematical modeling.

Three vertical cross sections (Tl₂S-Tl₂Se,Tl₂S-Tl₅Se₂Br, Tl₆SBr₄-Tl₅Se₂Br) and the liquidus surface projection of the Tl₂S-Tl₅Se₂Br-TlBr system were constructed, the boundaries of phase areas, as well as the coordinates of nonvariant equilibriums determined [150].

5.2. Tl–X–Hal–Hal¹ systems

The research results of the systems composed of selenides and halides of tallum are reported in [151-153]. It revealed that the TISe-TICl-TII system belongs to the nonvariant eutectic type [151], whereas TISe-TIBr-TII [152] and TISe-TICl-TIBr [153] are of the monovariant eutectic type.

Tl₅Se₂Br-Tl₅Se₂I and Tl₅Te₂Br-Tl₅Te₂I systems are characterized by formation of continuous solid solutions [154,155].

The interaction between A_2TeC_6 (A–K,Rb,Cs,Tl; C–Br,I) compounds was studied and their T-x diagrams constructed [99,154]. These systems are quasi binary and form a phase diagram of eutectic type containing a large solid solution areas on the base of primary constituents.

The effect of the crystallochemical factor on the interaction of the components in these systems was determined by the ratio of the type of A2TeC6 compounds and the extent of the interaction of these cations and their anions in determining the nature of the interaction in these systems.

By the influence of the crystallochemical factor on the interaction of components in these systems it was determined that the main parameter defining the structur type of A_2TeC_6 compounds and the character of chemical

interaction in these systems is the size ratio of cations and anions.

The phase equilibria in the T₂Te–TlBr– Tl₂Te-TlCl-TlI, Tl₂Te-TlCl-TlBr TlI, systems were studied by means of DTA and X-ray analysis, as well as by measurement of microhardness and EMF of the concentration chains relative to the thallium electrode [141,157,158]. Some polythermal sections, an isothermal section at 300K, as well as the projection of the liquidus surface of all three systems were constructed. The primary crystallization areas, types and coordinates of nonand monovariant equilibriums determined.

Tl₅Te₂Hal–Tl₅Te₂Hal⁷ systems nonquasi-binary due to the incongruent melting character of ternary compounds and consists of aliquation fields. However, isostructural Tl₅Te₂Hal (Hal – Cl, Br, I) compounds form continuous solid solutions in solid state. Thus, a very interesting and rare phenomenon is observed in these systems despite the fact that, there is a complete aliquation in liquid state, the initial constituents of these systems are completely dissolved in each other in solid state. Realization of a such an unusual phenomenon in the Tl₅Te₂Hal–Tl₅Te₂Hal⁷ systems is related to the fact that the aliquation in these systems does not reflect the character of interaction between the ternary compounds, but rather the melting character of these compounds and solid solutions based on them [159]. Also the composition of the layered liquid phases is outside of the T-x plane of these systems.

In all Tl₂Te–TlHal–TlHal['] systems, the homogeneity areas of the solid solutions based

on the Tl_5Te_2Hal compounds fall outside the $Tl_5Te_2Hal-Tl_5Te_2Hal'$ sections and occupy a wide area in the $Tl_2Te-Tl_5Te_2Hal-Tl_5Te_2Hal'$ subsystems. This is due to the existence of a large one-sided homogeneity area on the basis of Tl_5Te_2Hal compounds in the $Tl_2Te-TlHal$ systems.

6. Phase equilibria in some systems consisting of compounds of the Tl₅Te₃ type crystal structure

Tl₅Te₃-Tl₉BiTe₆-Tl₅Te₂Hal systems are of great interest in terms of preparation of thermoelectric materials with very low heat conductivity. The point is that one of the components - Tl₉BiTe₆ compound has a record high thermoelectric efficiency [29]. By incorporating halogen atoms in the crystal lattice of this compound, it is possible to further complicate them and reduce the thermal conductivity.

Phase equilibriums in the Tl_5Te_3 - Tl_9BiTe_6 - Tl_5Te_2 Hal systems were investigated by physico-chemical analysis methods, the isothermal sections at 760 and 800K and the projections of the liquidus surfaces of these systems were constructed [160-163].

 Tl_5Te_3 - Tl_9BiTe_6 and Tl_5Te_3 - Tl_5Te_2Hal boundary systems of the Tl_5Te_3 - Tl_9BiTe_6 - Tl_5Te_2Hal concentration trangles were studied in [83,89,164]. It showed that these systems are characterized by unlimited dissolution of components one into another. Tl_9BiTe_6 - Tl_5Te_2Hal systems form a continuous solid solutions (δ -phase) and are quasi-binary due to the incongruent melting of tellurohalides

[163]. The composition of liquid phases go beyond the T-x diagram of these systems. Powder diffractograms of all aloys have a Tl₅Te₃ type tetragonal structure while the dependence of lattice parameters on the composition is almost linear.

The liquidus surfaces of the Tl₅Te₃-Tl₉BiTe₆-Tl₅Te₂Hal systems are composed of parts matching to the primary two crystallization of δ-phase from the homogeneous alloy and L+L1 immiscibility area. The ab curve connecting these two regions is characterized by the $L+L_1 \rightarrow \delta$ monovariant syntectic equilibrium. solidus of the system consists of a surface to comply with the end of crystallization (dashed line) [160-162]. The liquidus projection of all three systems is qualitatively similar and differs only by the size of the $L+L_1$ immiscibility area. The results on the phase equilibrium can be used to select the composition of the sample and temperature regimes when growing δ -solid solution crystals of given composition [159].

Conclusion

In the review paper, the literature data and results of the work of the authors on physico-chemical research into some ternary and more complex systems which are considered important in terms of creation of physico-chemical bases for directional synthesis of tallium chalcohalides and related multicomponent non-stoichiometric phases. It revealed that as a result of the studies in these systems, a wide range of ternary compounds and multicomponent solid solutions of great

interest as promising functional materials with thermoelectric, optical, magnetic, sensor and detector properties were identified. These data open up great opportunities for optimizing the functional properties of phases by directional variation of their composition. Besides, the fundamental thermodynamic properties of thallium chalcohalides and many phases of variable composition which are valuable as scientific data and important for optimizing conditions of their design were determined.

REFERENCES

- Physical-chemical properties of semiconductor substances. Reference-book.
 Ed. By Novoselova A.V. and Lazareva V.B. Moscow: Nauka publ.,1976, 339 p.
- 2. Abrikosov N.Kh., Bankina V.F., Poretskaya L.V. et al. *Semiconductor Chalcogenides and Their Base Alloys*. Moscow: Nauka Publ. 1968.
- 3. Gerzanich E.I., Lyakhovitskaya V.A., Fridkin V.M., Popovkin B.A. SbSI and other ferroelectric AVBVICVII materials, in: E. Kaldis (Ed.), Current Topics in Materials Science, 1982, pp. 55-190.
- 4. Babanly M.B., Jusibov Ju.A., Abishev V.T. Three-component chalcogenides based on copper and silver. Baku: BSU Publ., 1993, 342 p.
- Shelimova L.E., Tomashik V.N., Gryciv V.I. Constitution diagrams in semiconductor material science. Reference-book. Moscow: NaukaPubl., 1991, 368 p.
- 6. Eliseev A.A., Lukashin A.V. Functional nanomaterials. Ed.by Tretyakov Y. D. Moscow: Fizmatliz Publ., 2010, 456p.
- 7. Nanomaterials: properties and perspective application. Ed.by Yaroslavtsev A.B. Moscow: Nauchni Mir Publ.2014, 456 p.
- 8. Novoselov K.S., Geim A.K., Morozov S.V., Jiang D. et al. Electric Field Effect in Atomically Thin Carbon Films. *Science*, 2004, vol. 306, pp. 666-669.
- 9. Moore J.E. The birth of topological insulators. *Nature*, 2010, vol.464, pp.194-198.
- 10. Hasan M.Z., Kane C.L. Colloquium: Topological insulators. *Rev. Mod. Phys.* 2010, vol. 82, pp. 3045–3067.
- 11. Eremeev S.V., Landolt G., Menshchikova T.V., Slomski V. et al. Atom-specific spin mapping and buried topological states in a homological series of topological insulators. *Nature Communications*. 2012, vol. 3, pp.1638 (7).
- 12. Ahluwalia G.K. (Ed.). Applications of Chalcogenides: S, Se, and Te, Springer, 2016.

- 13. Kolobov A.V., Tominaga J. Two-Dimensional Transition-Metal Dichal-cogenides. Springer International Publishing, 2016, 538p.
- 14. Gao M-R., Xu Y-F., Jiang J. and Yu S-H. *Chemical Society Reviews*, 2013, vol.42, pp. 2986-3017.
- 15. Duan X.D., Wang C., Pan A.L. et al. *ChemSoc Rev.* 2015, vol. 44, p. 8859.
- 16. Butler, S.Z. et al. Progress, challenges, and opportunities in two-dimensional materials beyond graphene. *ACS Nano.* 2013, 7 (4), pp. 2898–2926.
- 17. Pesin D., MacDonald A.H. Spintronics and pseudospintronics in graphene and topological insulators. *Nature Mater*, 2012, vol. 11, pp. 409–416.
- 18. Chang Cui-Zu, Zhang J., Feng X., Shen J. et. all. Experimental Obsrevation of the Quantum Anomalous Hall Effect in a Magnetic Topological Insulator. *Science*. 2013, vol. 340, pp. 167–170.
- 19. Yue Z., Cai B., Wang L., Wang X., Gu M. Intrinsically core-shell plasmonic dielectric nanostructures with ultrahigh refractive index. *Science Advances*, 2016, vol. 2, no. 3, e1501536.
- 20. Yue Z., Xue G., Liu J., Wang Y., Gu M.Nanometric holograms based on a topological insulator material. *Nature Communications*, 2017, vol. 8, article number: 15354. doi: 10.1038/ncomms 15354.
- 21. Viti L., Coquillat D., Politano A., Kokh K.A., Aliev Z.S., Babanly M.B., Tereshchenko O.E., Knap W., Chulkov E.V., Vitiello M.S. Plasma-Wave Terahertz Detection Mediated by Topological Insulators Surface States. *Nano Letters*, 2016, vol.16, pp. 80–87.
- 22. Politano A., Silkin V.M., Nechaev I.A., Vitello M.S., Viti L., Aliev Z.S., Babanly M.B., Chiarello G., Echenique P.M., Chulkov E.V. Interplay of surface and Dirac plasmons in topological insulators: the case of Bi₂Se₃ . *Phys. Rev. Lett*, 2015,

- vol. 115, pp. 216802.DOI:https://doi.org/10.1103/PhysRevLett.115.216802
- 23. Otrokov M. M., Ernst A., Mohseni K., Fulara H., Roy S., Castro G.R., Rubio-Zuazo J., Ryabishchenkova A.G., Kokh K.A., Tereshchenko O.E., Aliev Z.S., Babanly M.B., Chulkov E.V., Meyerheim H.L. and. Parkin S.S.P. Geometric and electronic structure of the Cs-doped Bi₂Se₃(0001) surface. *Phys.Rev. B*, 2017, vol. 95, pp. 205429 -9.
- 24. Okamoto K., Kuroda K., Aliyev Z.S., Babanly M.B., Amiraslanov I.R. Observation of a higly spin polarized topological sirfase state in GeBi₂Te₄. *Phys.Rev.B.* (*American Phys.Soc.*), 2012, vol. 86, pp.195304-195308.
- 25. Okuda T., Maegawa T., Ye M. Et al.Experimental Evidence of Hidden Topological Surface States in PbBi₄Te₇.*Phys. Rev. Lett.* 2013, vol. 111, pp. 206803(5)
- 26. Niesner D., Otto S., Hermann V. et al. Bulk and surface electron dinamics in a *p*-topological insulator SnSb₂Te₄. *Phys.Rev.B.* 2014, vol. 89, pp. 081404(5).
- 27. Papagno M., Eremeev S., Fujii J. et al. Multiple Coexisting Dirac Surface States in Three-Dimensional Topological Insulator PbBi6Te1. *ACS Nano*, 2016, vol. 10, pp. 3518-3524.
- 28. Cristobal A., Martí Vega A., Luque López A. Next Generation of Photovoltaics. Springer-Verlag Berlin Heidelberg, 2012, 356 p.
- 29. Shevelkov A.V. Chemical aspects of thermoelectric materials generation. *Uspehihimii Russian Chemical Reviews*. 2008, vol. 77, no. 1, pp. 3-21.
- Madelung O. Semiconductors: Data Handbook. 3rd edition. Springer Berlin Heidelberg. 2004. 691p.
- 31. Rowe D.M. Thermoelectrics Handbook: Macro to Nano. CRC Press. Taylor & Francis Group: Boca Raton. FL. USA. 2006, 1008 p.
- 32. Wilson J.S. Sensor technology handbook. Elsevier, 2005, p. 691.
- 33. Gerzanich E.I., Fridkin V.M.. Ferroelectrics of the type A^VB^{VI}C^{VII}. Moscow: Nauka Publ., 1982, 227 p.
- 34. Dittrich H., Karl N., Kück S., Schock

- H.W., Madelung O. (Ed.). Ternary Compounds, Organic Semiconductors. Landolt-Borstein, Condensed Mater., III/41E, Springer-Verlag, Berlin, 2000, 518 p.
- 35. Fridkin V.M. Ferroelectric semiconductors. Consultants Bureau, New York, 1980, 318 p.
- 36. Crepaldi A. et al. Momentum and photon energy dependence of the circular dichroic photoemission in the bulk Rashba semiconductors BiTeX (X ¼ I , Br, Cl). *Phys. Rev.* B. 2014, vol. 89, 125408 (6).
- 37. Landolt G., Eremeev S.V., Aliyev Z.S., Babanly M.B., Amiraslanov I.R. et al. Disentaglement of surface and bulk Rashba spin splitting in noncentrosymmetric BiTeI. *Phys.Rev.Lett.* (*American Phys.Soc.*), 2012, vol. 109, pp. 116403-116407.
- 38. Maab H., Bentmann H., Seibel C., Tusche C. et. al. Spin-texture inversion in the giant Rashba semiconductor BiTeI. *Nature Communications*. 2016; 7: 11621. doi:10.1038/ncomms 11621
- 39. Datta S., Das B. Electronic analog of the electro-optic modulator. *Appl. Phys. Lett.* 1990, vol. 56, p. 665.
- 40. Koo H.C. et al. Control of spin precession in a spin-injected field effect transistor. *Science*. 2009, vol. 325, pp. 1515–1518.
- 41. Wunderlich J. et al. Spin Hall effect transistor. *Science*. 2010, vol. 330, pp. 1801–1804.
- 42. Schliemann J., Egues J. C. & Loss D. Nonballistic spin-field-effect transistor. *Phys. Rev. Lett.* 2003, vol. 90, p. 146801.
- 43. Kim M., Im J., Freeman A. J., Ihm J. & Jin H. Switchable S ¼ 1/2 and J ¼ 1/2 Rashba bands in ferroelectric halide perovskites. *Proc. Natl Acad. Sci.* 2014, vol. 111, pp. 6900–6904.
- 44. Aliyev Z.S, Babanly M.B, Shevelkov A.V, Babanly D.M, Tedenac J-C. Phase diagram of the Sb-Te-I system and thermodynamic properties of SbTeI. *Int.J.Mat.Res.* 2012; vol. 103: 290-5.
- 45. Babanly M.B, Tedenac J-C, Aliev Z.S, Balitsky D.M. Phase eqilibriums and thermodynamic properties of the system Bi-Te-I. *J.Alloys Compd.* 2009; 481:349-53

- 46. Aliev Z.S, Musayeva S.S, Jafarli F.Y, Amiraslanov I.R, Shevelkov A.V, Babanly M.B. The phase equilibria in the Bi–S–I ternary system and thermodynamic properties of the BiSI and Bi₁₉S₂₇I₃ ternary compounds. *J.Alloys Compd.* 2014; 610:522-8
- 47. Aliev Z.S., Musayeva S.S., Imamaliyeva S.Z. et al. Thermodynamic study of antimony chalcoiodides by EMF method with an ionic liquid. *J. Therm Anal Calorim*.2017. https://doi.org/10.1007/s10973-017-6812-4J.
- 48. Aliev Z.S., Musayeva S.S., Babanlı M.B. The phase relations in the Sb-S-I system and thermodynamic properties of SbSI. *Phase equilibria and diffusion*. 2017, vol. 38, no. 6, pp. 887-896.
- 49. Johnsen S., Liu Z.F., Peters J.A. et al. Thallium chalcohalides for X-ray and γ-ray detection. *J. Am. Chem. Soc.* 2011, vol. 133. pp. 10030–10033.
- 50. Johnsen S., LiuZ., Peters J.A., SongetJ-H. et al. Thallium Chalcohalides for X-ray and γ-ray Detection. *J. Am. Chem. Soc.* 2011, vol. 133, pp. 10030-10033.
- 51. Biswas K., Du M.H., Singh D.J.Electronic structure and defect properties of Tl₆SeI₄*Phys. Rev.* 2012, B 86, pp. 144108–144115.
- 52. Kanatzidis M.G., Androulakis I., Johnsen S., Peter S.C. Methods and compositions for the detection of X-ray and gamma-ray radiation. Patent US 20120153178 A1. 2012.
- 53. Sandy L., Malliakas C.D., Peters J.A., Liu Z. et al. Photoconductivity in Tl₆SI₄: A Novel Semiconductor for Hard Radiation Detection. *Chem. Mater*, 2013, vol. 25 (14), pp. 2868-2877.
- 54. Das S., Peters J.A., Lin W., Kostina S.S. et al. Observation of Persistent Photoconductivity in Tl₆SeI₄ Single Crystals. *J. Phys. Chem. Lett.* 2017; 8 (7), pp. 1538–1544.
- 55. Hongliang S., Wenwen L., Kanatzidis M.G., Szeles Cand Du M.H. Impurity-induced deep centers in Tl₆SI₄. *Journal of Applied Physics*. 2017; 121: 145102–14. https://doi.org/10.1063/1.4980174
- 56. Kostina S.S., Peters J.A., Lin W., Chen P. et al. Photoluminescence fatigue and in

- homogeneous line broadening in semiinsulating Tl₆SeI₄ single crystals. *Semiconductor Science and Technology.* 2016, 31(6), pp. 1-27.
- 57. Lin W., Kontsevoi O.Y., Liu Z., Das S. et al. Growth of Tl₆SeI₄ for γ-Ray Detection Material by Oxide Impurity Removal. *Cryst. Growth Des.* 2017, 17 (11) pp. 6096–9.
- 58. Okamoto H. Desk Handbook: Phase Diagrams for Binary Alloys. ASM International. 2010, 855 p.
- 59. Babanly M.B., Chulkov E.V., Aliev Z.S., Shevelkov A.V. and Amiraslanov I.R. Phase diagrams in materials science of topological insulators based on metal chalkogenides. *Zhurnal Neorganicheskoi Khimii Russ. J. Inorg. Chem.*, 2017, vol. 62, no. 13, pp. 1703–1729.
- 60. Peresh E.Ju., Lazarev V.B., Kornijchuk O.I., Cigika V.V. et al. Phase equilibria in systems Tl₂S(Se,Te)-TII и TlSe-TlCl(Br,I). *Neorganicheskie materialy Inorganic Materials*. 1993, vol. 29, no. 3, pp. 406-409. (In Russian).
- 61. Blachnic R., Dreisbach H.A. Tl₆X₄S-ein Neuer Chalkogenhalogenid typ in thallium sulfid-thallium halogenid systemen. *Z. Naturforsch.*, 1981, B. 36, no. 12, pp. 1500-1503.
- 62. Babanly D.M., Bagheri S.M., Jamalarai Z. T-x-y phase diagram of the system Tl-TlCl-S. *Chemistry Journal*, 2015, vol. 05, no. 2, pp. 29-34.
- 63. Gusejnov G.M., Babanly D.M., Sadygov F.M. Interaction of TlCl with sulfides of thallium. *Bakı Universitetinin Xeberleri-Baku University News. Series of Nature Study*. 2007, № 1, pp. 24-27. (In Azerbaijan).
- 64. Babanly D.M., Guseinov G.M., Sadygov F.M., Babanly M.B. Thermodynamic properties and homogeneity regions of Tl₆SCl₄ and Tl₅Se₂Cl. *Neorganicheskie materialy Inorganic Materials*. 2009, vol. 45, no. 3, pp. 129-134. (In Russian).
- 65. Babanly D.M. Physico-chemical bases of reception of thallium chalcohalides and multicomponent phases based on them. Doctoral diss.... Baku, 2018, 374 p.

- 66. Gusejnov G.M., Babanly D.M., Sadygov F.M. Phase equilibria in systems Tl-TlBr-S. *Zhurnal Neorganicheskoi Khimii Russ. J. Inorg. Chem.* 2006, том. 51, по. 5, pp. 876-879.
- 67. Peresh E.Ju., Lazarev V.B., Cigika V.V., Kornijchuk O.I. et al. Homogeneity ranges and properties of Tl₆SI₄, Tl₅Se₂I и Tl₅Se₂Br compounds. *Neorganicheskie materialy Inorganic Materials*. 1991, vol. 27, no. 10, pp. 2079-2083. (In Russian).
- 68. Peresh E.Ju., Lazarev V.B., Barchij I.E., Cigika V.V. et al. On dissociation of Tl₆S(Se)I₄ and Tl₅Se₂Br(I) compounds in hot-melt and phase equilibriums in systems with their participation. *Neorganicheskie materialy Inorganic Materials*. 1997, т. 33, no. 4, pp. 428-430. (In Russian).
- 69. Babanly D.M., Guseinov G.M., Babanly M.B., Sadygov F.M. Phase diagram of the Tl-TlI-S system and thermodynamic properties of the compound Tl₆SI₄. *Russ. J. Inorganic Chemistry*, 2012, vol. 57, no. 1, pp. 90-99.
- 70. Babanly D.M, Huseynov G.M, Huseynova R.G, Mustafayeva A.L. Physico-chemical interaction of thallium iodides with sulfur. *KimyaProblemleri Chemical Problems*. 2015, no. 2, pp. 154–160.
- 71. Blachnik R., Dreibach H.A. Phase Relations in the TlX-Tl₂Se systems (X=Cl, Br, I) and the Crystal Structure of Tl₅Se₂I. *J. Solid State Chem.* 1984, vol. 52, pp. 53-60.
- 72. Babanly D.M., Jusibov Ju.A., Babanly M. B. Phase diagram and thermodynamic properties of Tl-TlCl-Se system. *Zhurnal Neorganicheskoi Khimii Russ. J. Inorg. Chem.*, 2007, vol. 52, no. 5, pp. 819-826.
- 73. Babanly D.M., Jusibov Ju.A., Chiragov M.I. Phase Relations in the Tl₅Se₂Cl(Br)-Tl₂Se systems. *Azerb. Kim. Jurn. Azerb. Chem. J.* 2006, no. 3, pp. 76-79.
- 74. Babanlı D.M. The regularity of phyzikochemical interaction in system Tl-TlHal-X (Hal –Cl,Br; X-Se,Te). PhD Thesis. Baku, 2007, 201 p.
- 75. Babanly D.M., Dzhafarova G.Z., Jusibov Ju.A. Phase equilibriums in Tl₅Se₂Cl(Tl₅Se₂Br Tl(TlSe) systems. *Baka Universitetinin Xeberleri»- Baku Universi-*

- *ty News. Series of Nature Study*.2006, no. 2, pp. 16-22 (In Azerbaijan).
- 76. Babanly D.M., Jusibov Ju.A., Aliev I.I. Phase diagrams of TlCl-TlSe(TlTe) systems. *Kimya Problemleri Chemical Problems*, 2006, no. 1, pp. 183-185. (In Azerbaijan).
- 77. Babanly D.M., Jusibov Ju.A., Babanly M.B. Phase equilibriums and thermodynamic properties of Tl-TlBr-Se system. *Zhurnal Neorganicheskoi Khimii Russian Journal of Inorganic Chemistry*. 2007, vol. 52, no. 5, pp. 827-833.
- 78. Cigika V.V., Galagovec I.V, Peresh E.Ju. Homogeneity regions and properties of Tl₆SI₄, Tl₅Se₂I end Tl₅Se₂Br compounds.
 12 Ukrainian republican conference on inorganic chemistry. Simferopol, 1989, 58 p.
- 79. Gaborec N.I. Generation and properties of Tl₆BX₄ and Tl₅Se₂X (B-S,Se; X-Cl,Br,I) compounds. *XXI International Chugayev conference on chemistry*. Kiev, 2003, 221p. (In Ukraine).
- 80. Kornijchuk O.I., Sabov M.Ju., Dzihor M.D., Cigika V.V Phase equilibriums in Tl₅Se₂I(Br) compounds. *Proceedings of scientific conference of young scientists*. Ujgorod, 1988, pp.23-25. (In Ukraine).
- 81. Blachnic R., Dreisbach H.A, Engelen B. The System Thallous Iodide Thallous Selenide and the Structure of the TI₆X₄Y Compounds. *Z. Naturforsch.*, 1983, B. 38, no. 3, pp.139-143.
- 82. Blachnik R., Dreisbach H.A., Relzl J. The Thallous Chalcogenides Tl₆X₄Y (X=Cl, Br, I; Y = S, Se). *Mat. Res. Bull*, 1984, vol. 19(5), pp. 599-605.
- 83. Alieva R.A., Babanly I.M., Babanly D.M., Aliev I.I. Phase equilibriums в системах Tl₂Se-Tl₅Se₂I end Tl₂Te(Tl₅Te₃)- Tl₅Te₂I. In book: *IX Republican scientific conference «Physical-chemical analysis and inorganic materials science»*. Baku, 2004, pp.103-107.
- 84. Babanly D.M., Amiraslanov I.R., Shevelkov A.V. Tagiyev D.B. Phase equilibria in the Tl–TlI–Se system and thermodynamic properties of the ternary phases. *J. Alloy. Comp.* 2015, vol. 644, pp. 106-112.

- 85. Alieva R.A., Babanly I.M., Elchiev Ja.M., Aliev I.I Phase equilibriums in TlSe-Tl₅Se₂I end TlSe-Tl₆SeI₄ systems. *Kimya Problemleri-Chemical Problems*. 2005, no.5, pp. 42-45. (In Azerbaijan).
- 86. Babanlı D.M., Aliyev A.Sh., Tagıyev D.B. Physical-chemical interaction between selenium and thallium iodides. *Azerb. Kim. Jurn. –Azerb. Chem. J.* 2015, no. 2, pp. 47-52.
- 87. Babanly D.M., Babanly I.M., Rzaeva N.A., Aliev I.I. Quasi-binary TlCl(Br,I)—Te systems. *IX Republican scientific conference «Physical-chemical analysis and inorganic materials science»*. Baku, 2004, pp. 49-53.
- 88. Babanly D.M., Jusibov Ju.A. Some polythermal sections of phase diagram of Tl–Te–Cl system. *Kimya Problemleri-Chemical roblems*. 2006, no. 4, pp. 661-664. (*In Azerbaijan*).
- 89. Babanly D.M., Aliev I.I., Jusibov Ju.A. Chiragov M.I. Solid solutions in Tl₅Te₃– Tl₅Te₂Cl(Br) systems. *Azerb. Kimya Jurnali–Azerb. Chem.J.* 2007, no.1, pp.151-153.
- 90. Babanly D.M., Nadzhafova A.A., Chiragov M.I., Babanly M.B. New tellurium halides of thallium. *Kimya Problemleri Chemical Problems.* 2005, no. 2, pp. 149-151. (In Azerbaijan).
- 91. Babanly D.M., Chiragov M.I., Jusibov Ju.A. Homogeneity ranges of Tl₅Te₂Cl и Tl₅Te₂Br.*Neorganicheskiematerialy Inorganic Materials*. 2008, vol. 44, no. 10, pp. 1196-1202. (In Russian).
- 92. Babanly D.M., Aliev Z.S., Dzhafarli F.Ja., Babanly M.B. Phase equilibriums in Tl-TlCl-Te system and thermodynamic properties of Tl₅Te₂Cl compound. *Zhurnal Neorganicheskoi Khimii Russian Journal of Inorganic Chemistry*.2011, vol. 56, no. 3, pp. 483-489.
- 93. Babanly D.M., Gusejnov G.M., Jusibov Ju.A., Sadygov F.M. TlBr-TlS (TlSe, TlTe) systems. *IX Republican scientific conference «Physical-chemical analysis and inorganic materials science»*. Baku, 2004, pp.108-111.

- 94. Babanly D.M., Jusibov Ju.A. Phase equilibriums Tl–Te–Br system by some polythermal sections. *Kimya Problemleri Chemical Problems*. 2007, No. 2, pp. 241-246. (In Azerbaijan).
- 95. Babanly D.M., Babanly M.B. Phase equilibria in the Tl-TlBr-Te system and thermodynamic properties of the compound *Tl*₅*Te*₂*Br. Zhurnal Neorganicheskoi Khimii Russian Journal of Inorganic Chemistry*. 2010, vol. 55, no. 10, pp.1620-1629.
- 96. Zubaka O.V., Kun S.V., Galagovec I.V., PereshE.Ju. et al. Homogeneity ranges and properties T₁₂TeB_{r6}, C_{s2}TeB_{r6} and R_{b2}TeB_{r6}. *Neorganicheskie materialy Inorganic Materials*. 2001, vol. 37, no. 8, pp. 1000-1004. (In Russian).
- 97. Zubaka O.V., PereshE.Ju., Kun S.V., Galagovec I.V. et al. Generation and properties of high-purity tellurium-bromide and iodides of monocrystals of M_{e2}TeHa_{l6} (Me-Rb, Cs, Tl; Hal–Br,I) compounds. *In: Kharkov scientific ass. 8-th International symposium "High-purity metal and semiconductor materials"*. Kharkov, 2002, pp.11-113. (In Ukraine).
- 98. Zubaka O.V., Peresh C.Ju., Cidej V.I., Kun S.V. et al. Crystal structure and some properties of Tl₂TeBr₆ and Tl2TeI6 compounds. *Nauchnyj vesnik Uzhgorodskogo universiteta*. *Ser.: himija*. 2000, no. 5, pp. 3-5. (In Ukraine).
- 99. Zubaka O.V., Sidej V.I., Kun S.V. i dr. Influence of crystal-chemical factor on interaction nature in systems with the participation of triple halogenides A₂TeC₆(A–K,Rb,Cs,Tl; C–Br,I). *I-st All-Russian conference «Physical and chemical processes on condensed state and along inter-phase borders»*. Voronej, 2002, p.290. (In Russian).
- 100. Zubaka O.V., Sidey V.I., PereshE.Ju., Barchij M.E. et al. Ranges of homogeneity, generation and properties of mono-crystals of Me₂TeI₆ (Me-Rb, Cs, Tl) compounds. *Neorganicheskie materialy Inorganic Materilas*. 2002, vol. 38, no. 8, pp.1020-1024. (In Russian).

- 101. Peresh E.Yu., Zubaka O.V., Kun S.V., Galagovets I.V. et al. Stability limits and properties of Tl₂TeBr₆, Cs₂TeBr₆, and Rb₂TeBr₆. *Neorganicheskie Materialy Inorg. Mater.*, 2001, vol. 37, no. 8, pp. 1000-1004. (In Russian).
- 102. Sidey V.I., Zubaka O.V., Solomon A.M., Kun S.V. et al. X-ray powder diffraction studies of Tl₂TeBr₆ and Tl₂TeI₆. *J. Alloy. Comp.*, 2004, vol. 367, pp.115-120.
- 103. Alieva R.A., Babanly I.M., Aliev I.I., ElchievJa.M. Phase equilibriums in TII—TITe(Tl₂Te₃) systems. *Azerb. Kim. Jurn. Azerb. Chem. J.* 2005, no. 3, pp. 57-60.
- 104. Babanly D.M., Babanly I.M., Imamalieva S.Z., Gasimov V.A., Shevelkov A.V. Phase equilibria in the Tl-TlI-Te system and thermodynamic properties of the Tl₅Te_{3-x}I_x solid solutions. *J. Alloy. Comp.*, 2014, vol. 590, pp. 68-74.
- 105. Babanly D.M., AlievA.Sh., SoltanovaN.Sh., Tagiev D.B. Phase diagram of Tl-Te-I system in TlI-Tl₂TeI₆-Te compounds *Azerb. Kim. Jurn. –Azerb. Chem. J.* 2016, no. 1, pp. 49-53.
- 106. Babanly D.M., Imamalieva S.Z., Gadzhieva K.I., Tagiev D.B. Phase diagram of Tl-Te-I system in TlI-Tl₂TeI₆-I *Mezhd. Zhurnal prikladnyh i fundamental'nyh issledovanij. Akademija estestvoznanija.* 2016, no. 4, part. 5, pp. 894-898. (In Russian).
- 107. Babanly D.M., Imamalieva S.Z., Gusejnova R.G., Tagiev D.B. Phase diagram of Tl-Te-I system in Tl₂TeI₆-TeI₄-I compounds *Mezhd. Zhurnal prikladnyh i fundamental'nyh issledovanij. Akademija estestvoznanija.* 2016, no. 5, part. 2, pp. 216-218. (In Russian).
- 108. Babanly D.M., Aliev Z.S., Imamaliyeva S.Z., Zuniga F.J., Gotzon M., Tagiyev D.B. An investigation of the Tl-Te-I system and crystal structure of Tl₅Te₂I. *J. Alloy.Comp.*, 2016, vol. 688, pp. 997-1005.
- 109. Babanly D.M. Some features of phase equilibriums in TlHal-Tl₂X μTlHal-TlX (Hal- Cl,Br,I; X-S,Se,Te) systems. *AMEA meruzeler Proceedings of ANAS*. Bakı, 2009, no. 5, pp. 40-48.

- 110. Babanly D.M. Segregation of liquid phase in thallium-chalcogen-halogen systems. Azerbaycan Tekhniki Universiteti. Elmi eserler "Scientific works" Azerbaijan Technical University. 2013, vol. 45, no.1, pp. 135–139.
- 111. Man L.I., Imamov R.M., Pinsker Z.G. *Crystallogr.*, 1971, vol.16, no. 1, pp.122-126.
- 112. Bhan S, Shubert K. *J. Less. Common. Metals*, 1970, B.20, no.3, pp.229-235.
- 113. Schewe I., Böttcher P., Schnering H.G. *Z.Kristallogr.*, 1989, Bd188, pp. 287-298.
- 114. Böttcher P., Doert Th., Druska Ch., Brandmoller S. *J.Alloys Compd.* 1997, vol.246, p.209.
- 115. Voroshilov Yu.V., Gurzan M.I., Kish Z.Z., Lada L.V. *Neorganicheskie materialy-Inorganic Materials*. 1988, vol. 24, no.9, pp.1266-1269. (In Russian).
- 116. Wacker K. *Z. Kristallogr. Supple.*, 1991, vol. 3, p. 281.
- 117. Doert T., Böttcher P. *Z.Kristallogr.*, 1994, vol.209, p.95.
- 118. Imamalieva S.Z.,Sadygov F.M., and Babanly M.B. *Neorganicheskie Materialy-Inorganic Materials*. 2008, vol. 44, no. 9, pp. 935–938.(In Russian).
- 119. Babanly M.B., Imamalieva S.Z., and Sadygov F.M. *Kimya Problemleri Chem.Problems*, 2009, no.1, pp.171-174. (In Azerbaijan).
- 120. Bradtmöller S., Böttcher P. *Z. anorg. allg. chem.*, 1993, vol. 619, pp. 1155-1160.
- 121. Bradtmöller S., Böttcher P. *Z. Kristallogr.*, 1994, vol. 209, no. 1, p. 97.
- 122. Bradtmöller S., Böttcher P. *Z. Kristallogr*, 1994, vol.209, no. 1, p.75.
- 123. Doert Th., Asmuth R, Bottcher P. Syntheses and crystal structure of Tl5Se2Cl and Tl5Se2Br. *J. Alloy.Comp.*, 1994, vol.290, pp. 151-157.
- 124. Brik M.G., Kityk I.V. Modeling of lattice constant and their relations with ionic radii and electronegativity of constituting ions of AXY cubic crystals (A=K, Cs, Rb, Tl; X=tetravalent cation, Y=F, Cl, Br, I). *J. Phys. Chem. Solids*, 2011, vol. 72 (11), pp.1256.

- 125. Babanly D.M., Amiraslanovİ.M., Tagiyev D.B. Synthesis and Rietveld crystal structure refinement of Tl₅Te₂Br. *Reports, Academy of sciences of Azerbaijan*, 2015 (in print).
- 126. Babanly D.M., Tagiyev D.B.,
 Imamaliyeva S.Z. et al. Method of controlling the crystallization process.
 Patent I 20170056. 24.10.2017.
 Azerbaijan.
- 127. Babanly D.M. Nature of stehiometry and features of crystallic structure of T₁₅T_{e3} and its triple analogues. *AMEA meruzelari Proceedings of the Azerbaijan National Academy of Sciences*. Baku, 2010, no. 5, pp. 59-66.
- 128. Peresh E.Yu., Sidei V.I., Zubaka O.V. Systems based on A₂TeC₆ (A-Tl, K, Rb, Cs; C-Br, I) compounds with peritectic interactions. *Zhurnal Neorganicheskoi Khimii Russian Journal of Inorganic Chemistry*. 2009, vol. 54, no. 2, pp. 315-318.
- 129. Peresh E.Yu., Sidei V.I., Zubaka O.V., Stercho I.P. K₂(Rb₂,Cs₂,Tl₂)TeBr₆(I₆) and Rb₃(Cs₃)Sb₂(Bi₂)Br₉(I₉) perovskite compounds. *Neorganicheskie materialy Inorganic Materials*, 2011, vol. 47, no. 2, pp. 208-212. (In Russian).
- 130. Peresh E.Yu., Sidei V.I., Gaborets N.I., Zubaka O.V. et. al. Influence of the average atomic number of the A₂TeC₆ and A₃B₂C₉ (A- K, Rb, Cs, Tl (I); B-Sb,Bi; C-Br,I) compounds on their melting point and band gap. *Neorganicheskie materialy-Inorganic Materials*. 2014, vol. 50, no. 1, pp. 101-106. (In Russian).
- 131. Barchij I.E., Peresh E.Ju., Sabov M.Ju., Gaborec N.I. et al. Method of thallium compounds mono-crystal compounds preparation (I) of sulphotetrachlorine Tl₆SCl₄ and thallium (I) sulphotetrabromide Tl₆SBr₄. *Zhurnal Neorganicheskoi Khimii- Russian Journal of Inorganic Chemistry*. 2001, vol. 46, no.10, pp. 1729-1732.
- 132. Barchij I.E., Sabov M.Ju., Peresh E.Ju., Gaborec' N.J. 3D ranges of homogeneity of Tl₆SI₄ and Tl₆SeI compounds. *Nauchnyivesnik Uzhgorodskogo universiteta*.

- Ser.: himija. 2012, no. 1(27), pp. 6-11. (In Ukraine).
- 133. Gerasimov Ja.I. Selected works. General issues of physical chemistry and thermodynamics. Thermodynamic principles of materials science. Moscow: Nauka Publ., 1988, 333p.
- 134. Voronin G. F. Thermodynamics bases. Moscow: MSU Publ., 1987, 192 p.
- 135. Babanly D.M. Thermodynamic properties of solid phases in Tl₅Te₃-Tl₅Te₂Cl system. *Azerb. Kimya Jurnalı Azerb.Chem. J.* 2014, no. 3, pp. 92-96.
- 136. Babanly D.M. Thermodynamic research into solid solutions Tl₅Te_{3-x}Br_x through EC. *Neorganicheskie materialy Inorganic Materilas*, 2015, vol. 51, no. 4, pp. 378–382. (In Russian).
- 137. Babanly D.M., Mashadiyeva L.F., Zlomanov V.P. Thermodynamic properties of Tl₅Se₂Cl-based solid solutions. *Neorganicheskie materialy Inorganic Materials*. 2014, vol. 50, no. 8, pp. 780-785. (In Russian).
- 138. Babanly D.M. Composition range and thermodynamic properties of Tl₅Se₂Br based solid solutions. *Neorganicheskie materialy-Inorganic Materials*, 2011, vol. 47, pp. 583-587. (In Russian).
- 139. Babanly D.M., Bagheri S.M., Shevelkov A.V., Aliyev Z.S. Phase equilibrium in the system Tl₂Te–TlBr–TlI and thermodynamic properties of the solid solution Tl₅Te₂Br_xI_{1-x}. *J. Alloy. Comp.*, 2013, vol. 581, pp. 762 768.
- 140. Babanly D.M. Azerbaycan Tekhniki Universiteti. Elmi eserler "Scientific works" Azerbaijan Technical University. 2010, no. 2, vol. IX (34), pp. 97-100.
- 141. Babanly D.M. Estimation of gibbs free energy of formation of thallium chalco-halogenides on the basis of phase diagrams. *Kimya problemleri Chemical Problems*. 2010, no.1, pp.123-126. (In Azerbaijan).
- 142. Babanly D.M., Huseynov G.M., Aliev Z.S., Taghiyev D.B., Babanlı M.B. Thermodynamic Study of Tl₆SBr₄ Compound and Some Regularities in Thermodynamic Properties of Thallium

- Chalcohalides. *Advances in Materials Science and Engineering*. Volume 2017. Article ID 5370289, 9 pages.doi.org/10.1155/2017/5370289.
- 143. Barchij I.E., PereshE.Yu., SabovM.Yu., Gaborets N.I., Kun A.V. Phase Equilibria of the Tl₂S–Tl₂Se–TlI System. *J. Inorg. Chem.*, 2002, vol. 47, no. 10, pp. 1568–1571.
- 144. Barchij I., Haborets N.Y., PereshE.Yu., Tzihika V.V.et al. The Tl₂S–Tl₂Se–TlBr(I) Systems. 6th International School–Conference "Phase Diagrams in Materials Science". Kiev, 2001, pp.94-95.
- 145. Sabov M.Ju., Peresh E.Ju., Barchij I.E.Phase equilibriums in Tl₅Se₂Br–Tl₆Se₂I end Tl₆SI₄–Tl₆SeI₄systems. *Nauchnyj vesnik Uzhgorodskogo universiteta. Ser.: himija.*1997, no. 2, pp. 26-27.(In Ukraine).
- 146. Sabov M.Ju.Complex chalcogenides and thallium halochalcogenides in the systems Tl-Zr-S (Se, Te), Tl-S (Se) -Br (I).PhD thesis. Lviv, 2000, 195 c. (In Ukraine).
- 147. Barchij I.E., Peresh E.Ju., Sabov M.Ju., Gaborec' N.J.Phase equilibriums in Tl₂S–Tl₅Se₂Br(I) systems. *Ukrains'kij himichnij Zhurnal Ukrainian chemistry journal*. 2001, vol. 67, no. 12, pp. 76-79.
- 148. Gaborec' N.J., Peresh E.Ju., Sidej V.I., Cigika V.V., Galagovec' I.V. *Nauchnyj vesnik Uzhgorodskogo universiteta. Ser.: himija.* . 2009, no.22, pp. 83-86. (In Ukraine).
- 149. Barchij I.E., Peresh E.Ju., Gaborec N.J., Sabov M.Ju., Cigika V.V.Physico-chemical interaction in a TII–TI₆SI₄– TI₆SeI₄ quasi-ternary system. *Fizika i Himiya tverdogo tela Physics and Chemistry of Solid State.* 2003, vol. 4, no. 2, pp. 329-334.(In Ukraine).
- 150. Barchij I.E., Peresh E.Yu., Haborets N.J., Sabov M.Yu., Tzigika V.V. Phase relations in the Tl₂S–Tl₅Se₂Br–TlBr ternary system. *J. Alloy. Comp.*, 2003, vol. 353, pp. 180-183.
- 151. Barchij I.E., Peresh E.Ju., Sabov M.Ju., Gaborec' N.J. Phase equilibrium in the TlSe–TlCl–TlIquasi-ternary system. *Ukrains'kij himichnij Zhurnal Ukrainian*

- *chemistry journal*. 2002, т. 68, № 6, с. 71-75.
- 152. Barchij I.E., Peresh E.Yu., Haborets N.J., Tzigika V.V. The TlSe–TlBr–TlI quasi-ternary system. *J. Alloy. Comp.*, 2003, vol. 358, pp. 93-97.
- 153. Barchij I.E., Slobodjan L.A., Peresh E.Ju., Sabov M.Ju. Physical-chemical interaction inTlSe–TlCl–TlBr system. *Ukrains'kij himichnij Zhurnal Ukrainian chemistry journal*. 2000, vol. 66, no. 4, pp. 71-75.
- 154. Gaborec' N.J., Peresh E.Ju., Stasjuk Ju.M., Barchij I.E. *Nauchnyj vesnik Uzhgorodskogo universiteta. Ser.: himija.* 2003, no. 9, pp. 70-73. (In Ukraine).
- 155. Babanly D.M., Mustafayeva A.L., Aliyev A.Sh. Phase equilibriums and some properties of solid solutions in Tl₅Te₂Br–Tl₅Te₂I system. *Azerbaycan Tekhniki Universiteti. Elmi eserler -"Scientific works" Azerbaijan Technical University.* 2012, vol.XI (44), no. 4, pp. 140 142.
- 156. Переш Е.Ю., Сидей В.И., Зубака О.В. Взаимодействие в системах A₂TeI₆–Tl₂TeI₆ и A₂TeBr₆–A₂TeI₆ (A–K,Rb,Cs,Tl(I)). Neorganicheskie materialy Inorganic Materials. 2005, vol. 41, no, 3, pp. 357-362. (In Russian).
- 157. Babanly D.M., Imamaliyeva S.Z., Solid solutions with Tl₅Te₃ structure in Tl₂Te–TlCl–TlBr system/ X International Kurnakov physical-chemical analysis conference. Samara, 2013, vol. 1, pp. 219–223.
- 158. Babanlı D.M. Phase equilibriums in Tl₂Te-TlCl-TlI quasi-triple system. *Azerbaycan Tekhniki Universiteti. Elmi eserler "Scientific works" Azerbaijan Technical University.* 2014, vol. 2, no. 2, pp. 313-320.
- 159. Babanly DM, Aliyev ASH. Physicochemical aspects of obtaining new phases of variable composition on the basis of thallium tellurium-halides. *Kimya Problemleri Chemical Problems*. 2016, no.1, pp. 26-35. (In Azerbaijan).
- 160. Babanly D.M., Askerova S.V., JusibovJu.A., Babanly M.B. Phase equilibriums and some properties of solid solu

- tions in the Tl₅Te₃-Tl₉BiTe₆-Tl5Te₂Br sys-Inorganic Chemistry, 2011, vol. 56, no. 7, pp. 1182-1186.
- 161. Babanly D.M., Askerova S.V., Aliev Z.S., Babanly M.B. Phase equilibriums and some properties of solid solutions in the Tl₅Te₃-Tl₉BiTe₆-Tl₅Te₂Cl systems. *Zh.neorgan. Himii Russ. J. Inorganic Chemistry.* 2011, vol. 56, no. 11, pp.1917-1923.
- 162. Babanly D.M., Askerova S.V., Yusibov Yu.A., Babanly M.B. Phase equilibria and properties of solid solutions in the Tl₅Te₃-Tl₉BiTe₆-Tl₅Te₂I system.

- tem. Zh.neorgan. Himii Russ. J. Neorganicheskie materialy Inorganic Materials. 2010, vol. 46, no. 1, pp.17-21. (In Russian).
- 163. Babanly D.M., Askerova S.V., Babanly I.M. Phase equilibriums in the Tl₉BiTe₆-Tl₅Te₂Γ (Γ-Cl,Br,I) systems. *Azerb. Kim. Jurn. Azerb. Chem. Journal*, 2009, no.1, pp. 135-139.
- 164. Babanly M.B., Akhmadyar A., Guliyev A.A. The Tl₂Te-Bi₂Te₃-Te system. *Zhur-nal Neorganicheskoi Himii Russ. J. Inorganic Chemistry*, 1985, vol. 30, no. 9, pp.2356-2361.

TALLİUMUN XALKOHALOGENİDLƏRİ ƏSASINDA ÜÇLÜ VƏ DAHA MÜRƏKKƏB FAZALARIN ALINMASININ FİZİKİ-KİMYƏVİ ASPEKTLƏRİ

D.M. Babanlı, D.B. Tağıyev

AMEA akad.M.Nağıyev adına Kataliz və Qeyri-Üzvi Kimya İnstitutu AZ1143, Bakı şəh., H.Cavid pr., 113; e-mail: dunyababanly2012@gmail.com

İcmal məqalədə talliumun xalkohalogenidlərinin və onlar əsasında yeni çoxkomponentli fazaların alınması baxımından maraq kəsb edən bəzi üçlü və daha mürəkkəb sistemlərin fiziki-kimyəvi tədqiqinin nəticələri sistemləşdirilmiş və təhlil edilmişdir. Qeyri-üzvi maddələrin bu sinfi termoelektrik, optik, maqnit, sensor və detektor xassələrinə malik olan perspektivli funksional materiallar kimi elmi və praktiki maraq kəsb edir. Burada həmçinin, tallium xalkohalogenidlərinin və onlar əsasında dəyişən tərkibli aralıq fazaların kristal quruluş xüsusiyyətləri, termodinamik və bəzi fiziki-kimyəvi xassələrinə aid ədəbiyyat məlumatları araşdırılmışdır.

Açar sözlər: tallium xalkohalogenidləri, funksional materiallar, faza diaqramı, bərk məhlullar, termodinamik xassələr, kristal quruluş.

ФИЗИКО-ХИМИЧЕСКИЕ АСПЕКТЫ РАЗРАБОТКИ ТРОЙНЫХ И СЛОЖНЫХ ФАЗ НА ОСНОВЕ ХАЛЬКОГАЛОГЕНИДОВ ТАЛЛИЯ

Д.Б.Бабанлы, Д.Б.Тагиев

Институт Катализа и Неорганической химии им. акад. М.Нагиева Национальной АН Азербайджана Пр. Г. Джавида, 113, Баку, AZ1143; e-mail: dunyababanly2012@gmail.com

В обзоре систематизированы и проанализированы результаты физико-химических исследований тройных и более сложных систем, представляющих интерес с точки зрения получения халькогалогенидов таллия и новых многокомпонентных фаз на их основе. Этот класс неорганических веществ представляет научный и практический интерес как перспективные функциональные материалы с термоэлектрическими, оптическими, магнитными, сенсорными и детекторными свойствами. Также проанализированы литературные данные о кристаллической структуре, термодинамических и некоторых физико-химических свойствах халькогалогенидов таллия и фаз на их основе.

Ключевые слова: халькогалогениды таллия, функциональные материалы, фазовая диаграмма, твердые растворы, термодинамические свойства, кристаллическая структура.