

UDC 541.123/.123.8/9:546.57'81'86/23

PHASE EQUILIBRIA IN THE Ag₂Se-PbSe-AgSbSe₂ SYSTEM

¹Sh.H. Mansimova, ²K.N. Babanly, ²L.F. Mashadiyeva, ¹R.J. Mirzoyeva, ²M.B. Babanly

¹Baku State University

Z. Khalilov, 23, AZ-1148, Baku, Azerbaijan

²Institute of Catalysis and Inorganic Chemistry National Academy of Sciences of Azerbaijan

113, H.Javid Ave., AZ-1143, Baku, Azerbaijan; e-mail: leylafm76@gmail.com

Received 16.12.2018

The work presents results of the study into phase equilibriums in the Ag₂Se-PbSe-AgSbSe₂ through the methods of differential thermal and X-ray diffraction analyses. Based on the experimental data, polythermic sections of AgSbSe₂-(PbSe)_{0,5}(Ag₂Se)_{0,5} and Ag₂Se-(PbSe)_{0,5}(AgSbSe₂)_{0,5}, isothermal section at 300 K of the phase diagram, as well as projection of the liquidus surface were constructed. It showed that the system cited above is a quasi-ternary plane of the Ag-Pb-Sb-Se quaternary system characterized by the presence of non-invariant transition equilibrium. The fields of primary crystallization of phases, types and coordinates of non- and monovariant equilibria were determined. A wide range (~80 mol%) of solid solutions based on AgSbSe₂ along the PbSe-AgSbSe₂ section was revealed.

Keywords: phase diagram, solid solutions, liquidus surface, silver-antimony selenide, lead monoselenide.

Doi.org/10.32737/2221-8688-2019-1-41-49

INTRODUCTION

In recent decades. the study thermoelectric materials has attracted increasing attention both from an energy and environmental point of view. In addition, the development of highly efficient thermoelectric devices for heat waste recovery systems can bring enormous economic benefits [1-5]. Recent studies have shown that Ag-B^V-X and Ag-A^{IV}-B^V-X (where A^{IV}-Sn, Pb; B^V-Sb, Bi; X-S, Se, Te) alloys show high ZT values of thermoelectric figure of merit [6-10]. In particular, ternary compounds with the general formula AgB^VX₂ attract the attention of researchers due to their thermoelectric, optical, electronic properties [11–15]. functional properties of such materials can be improved using such processes as doping, obtaining of related solid solutions and composites. And this, in turn, is based on the study of phase equilibria in the corresponding systems [16-18].

Earlier, we carried out complex studies of phase equilibria and thermodynamic properties of the Ag₂Se–PbSe-Bi₂Se₃ [19],

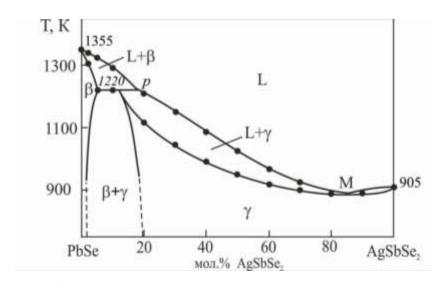
 $Ag_2Te-PbTe-Bi_2Te_3$ [20], $Ag_2Te-SnTe-Bi_2Te_3$ [21] and $Ag_2Te-SnTe-Sb_2Te_3$ [22, 23] systems where wide areas of solid solutions along $A^{IV}X-AgB^{V}X_2$ sections are revealed.

This paper presents new experimental data on phase equilibria in the quasi-ternary Ag₂Se-PbSe-AgSbSe₂ system.

All the initial components of the title system, which are semiconductors [24], have been studied quite well. Lead monoselenide melts congruently at 1354 K [25] and crystallizes in a NaCl-type crystal lattice (Sp.gr. Fm3m) with the unit cell parameter a = 6.1243Å [26].

Silver selenide is characterized by polymorphism and mixed electron-ion conductivity [27]. This compound melts congruently at 1170 K [28]. According to the authors of [29], the $\alpha \rightarrow \beta$ phase transition in Ag₂Se occurs at 407.7±0.5 K. The low-temperature β -Ag₂Se phase crystallizes in an orthorhombic structure (Sp.gr. P 2₁2₁2₁) with cell parameters: a = 4.3359 Å, b = 7, 0700 Å, c = 7.7740 Å, c = 4 [30]. The high-temperature

 α -Ag₂Se phase forms crystals of the cubic system (Sp.gr. I m3m) with cell parameters a = 5.043 Å, Z = 2 [31].


The AgSbSe₂ compound also melts congruently at 908 K [32] and forms a cubic crystal lattice of the NaCl type (Sp.gr. Fm3m) with the parameter a = 5.786 Å [33].

The boundary quasi-binary systems of Ag₂Se-PbSe, Ag₂Se-AgSbSe₂ and PbSe-AgSbSe₂ have been studied in a number of works. The Ag₂Se-PbSe system has a simple eutectic type phase diagram. Eutectics melts at 933 K and contains 25 mol. % PbSe [34] (22 mol.% PbSe according to [35]).

The Ag₂Se-AgSbSe₂ system forms an

eutectic-type phase diagram [31]. The eutectic melt contains 46 mol. % AgSbSe $_2$ and crystallizes at 813 K.

The PbSe-AgSbSe₂ system was recently studied in [36] and its phase diagram was constructed. It is shown that the system is quasi-binary and belongs to the peritectic type (Fig. 1). Peritectics has coordinates of 18 mol.% AgSbSe₂ and 1220 K. Solubility on the basis of AgSbSe₂ and PbSe at the peritectic temperature is 87 (γ -phase) and 5 mol% (β -phase), and at room temperature 80 and ~2 mol%, respectively. There is a minimum point (M) on the curves of the liquidus and solidus.

Fig.1. Phase diagram of the PbSe-AgSbSe₂ system [36]

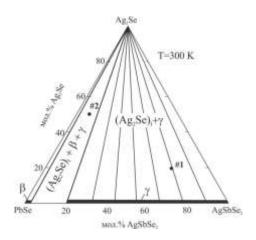
EXPERIMENTAL PART

experiments, the initial compounds of the studied system of Ag₂Se, PbSe and AgSbSe₂ were obtained. The synthesis was carried out by fusing the corresponding elementary components in stoichiometric ratios in evacuated to ~10⁻² Pa and sealed quartz ampoules at temperatures above the melting points of the 50° compounds. Simple substances from the company **EVOCHEM** ADVANCED MATERIALS GMBH (Germany) of high purity were used for the synthesis: silver in granules (Ag-00047; 99.999%), antimony in granules (Sb-00002; 99.999%), lead in granules (Pb-00005; 99.9995%), selenium in granules (Se-00002; 99.999%). Taking into account the high vapor pressure of selenium at the melting temperatures of binary selenides of Ag₂Se and PbSe, the synthesis of both compounds was performed in the two-zone mode. The hot zone temperature was 1150 K for Ag₂Se and 1390 K for PbSe, and the cold zone was 900 K, which is slightly below the boiling point of selenium (958 K) [37]. According to the recommendations of

the authors of [38], the ampoule with Ag_2Se melt was quenched from a temperature of 1100 K into cold water after the synthesis in order to obtain a uniform stoichiometric composition of this compound. All the synthesized compounds were checked by the methods of DTA and PXRD. The obtained values of melting points and lattice parameters for all synthesized compounds were close to the above literature data within the error (± 3 K and $\pm 0,0003$ Å).

For experiments, a series of alloys along the $AgSbSe_2$ -[A] and Ag_2Se -[B] sections (where [A] and [B] are alloys with composition $(PbSe)_{0,5}(Ag_2Se)_{0,5}$ and $(PbSe)_{0,5}(AgSbSe_2)_{0,5}$, respectively), as well as a number of additional alloys outside of them were prepared by melting the initial

compounds under vacuum. Cast non-homogenized samples were annealed at 770 K (500 h) in order to achieve a state closest to the equilibrium state in alloys.

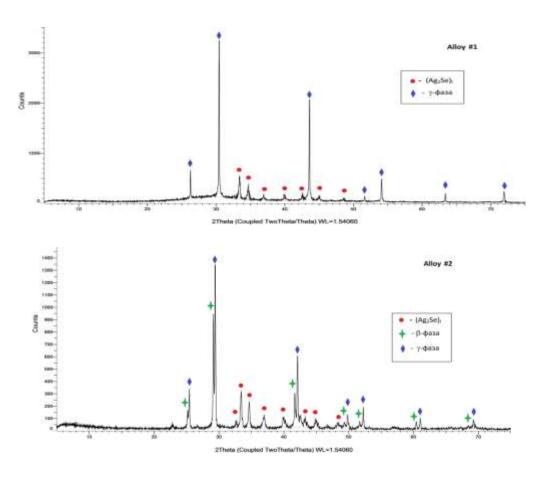

DTA was performed in range from room temperature to 1400 K with a heating rate of 10 K· min $^{-1}$ on a NETZSCH 404 F1 PEGASUS SYSTEM differential scanning calorimeter. The measurement results were processed using the NETZSCH Proteus Software. The accuracy of temperature measurement was within ± 2 K.

X-ray phase analysis was carried out at room temperature on a BRUKER D8 ADVANCE diffractometer with $\text{CuK}\alpha_1$ radiation. X-ray patterns were indexed using BRUKER TOPAS V3.0 Software.

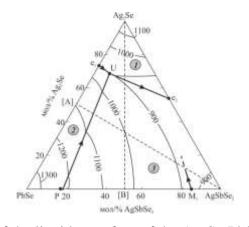
RESULTS AND DISCUSSION

By means of joint processing of obtained experimental results and literature data on the boundary quasi-binary systems of Ag₂Se-PbSe [34,35], Ag₂Se-AgSbSe₂ [32] and

PbSe-AgSbSe₂ [36], we obtained a mutually agreed picture of phase equilibria in the Ag₂Se-PbSe-AgSbSe₂ system.


Fig. 2. Isothermal section at 300 K of the phase diagram of the Ag₂Se-PbSe-AgSbSe₂ system. # 1 and # 2 - alloys with powder X-ray patterns are presented in Fig.3.

Phase equilibria at room temperature. The obtained diagram of solid-phase equilibria (Fig. 2) in the $Ag_2Se-PbSe-AgSbSe_2$ system clearly shows the location of phase regions at 700 K. As can be seen, Ag_2Se forms connodes with the β- and γ-phases based on PbSe and $AgSbSe_2$, respectively. As a


result, the concentration triangle is divided into two two-phase and one three-phase areas. The phase compositions of the alloys are confirmed by PXRD technique. For example, Fig. 3 shows powder diffraction patterns of two alloys: # 1 with a composition of 20

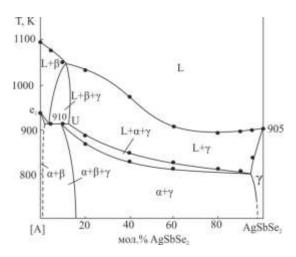
mol.% Ag₂Se, 62 mol.% AgSbSe₂, 18 mol.% PbSe and # 2 with a composition of 50 mol.% Ag₂Se, 6 mol.% AgSbSe₂, 44 mol.% PbSe. As can be seen from Figure 3, alloy # 1 consists

of a two-phase mixture $(Ag_2Se)_I+\gamma$, and alloy # 2 consists of a three-phase mixture $(Ag_2Se)_I+\beta+\gamma$.

Fig. 3. Powder X-ray patterns of alloys # 1 (20 mol.% Ag₂Se, 62 mol.% AgSbSe₂, 18 mol.% PbSe) and # 2 (50 mol.% Ag₂Se, 6 mol.% AgSbSe₂, 44 mol.% PbSe)

Fig. 4. Projection of the liquidus surface of the $Ag_2Se-PbSe-AgSbSe_2system$. Primary crystallization fields: $1 - \alpha$, $2 - \beta$, $3 - \gamma$. Dotted lines - cuts $AgSbSe_2-[A]$ and $Ag_2Se-[B]$

Liquidus surface. The liquidus of the $Ag_2Se-PbSe-AgSbSe_2$ system (Fig. 4) consists of three fields of the primary crystallization of the α-, β- and γ-phases (respectively, fields 1, 2 and 3 on Fig. 4). The liquidus surface of the γ-phase ($AgSbSe_2$) has the greatest width. The fields of primary crystallization of phases are separated by one peritectic (pU) and two


eutectic (e_1U , Ue_2) curves. All three curves converge at a transition point U, corresponding to the composition of the melt that is in invariant equilibrium $L+\beta\leftrightarrow\alpha+\gamma$.

The types and coordinates of invariant equilibria, as well as temperature ranges of monovariant equilibria are listed in the Table.

Point or curve in Fig.4	Equilibrium	Composition, mol%			
		Ag ₂ Se	AgSbSe ₂	PbSe	T, <i>K</i>
e_1	L↔α+β	73	-	27	933
e_2	L↔α+γ	54	46	-	793
P	L+β↔γ	-	82	18	1220
M	L↔γ	-	85	15	890
U	L+β↔α+γ	70	8	22	910
e ₁ U	L↔α+β				933-910
pU	L+β↔γ				1220-910
e_2U	L↔α+γ				793-910

Table. Non- and monovariant equilibria in the Ag₂Se-PbSe-AgSbSe₂ system

Polythermal sections. We analyzed and constructed two polythermal sections AgSbSe₂-[A] and Ag₂Se-[B].

Fig. 5. Polythermal section AgSbSe₂-[A] of the phase diagram of the system Ag₂Se-PbSe-AgSbSe₂.

The $AgSbSe_2$ -[A] section (Fig.5). The liquidus of this section consists of two branches corresponding to the primary crystallization of the β-phase based on PbSe and γ-phase based on AgSbSe₂. A flat

minimum is observed on the liquidus curve of the γ-phase which is probably due to the presence of a minimum point on the PbSe– AgSbSe₂ boundary system. Curves below the liquidus correspond to monovariant peritectic (pU) and eutectic $(e_1U; e_2U)$ equilibria (Table, Fig.4). The horizontal line at 910 K characterizes the nonvariant transition equilibrium L+ $\beta\leftrightarrow\alpha+\gamma$ (point U in Fig. 4). After completion of this process a three-phase

The Ag_2Se -[B] section (Fig. 6). This section passes through the primary crystallization fields of the α - and γ -phases. Then joint secondary crystallization of these

 $\alpha+\beta+\gamma$ area is formed at the excess of β -phase. As for the excess of liquid, the transition reaction finished by the formation of the three-phase $L+\alpha+\gamma$ region.

phases occurs and as a result, a two-phase α + γ area is formed in a sub-solidus. The horizontal line at 397 K corresponds to the phase transition of the α -phase.

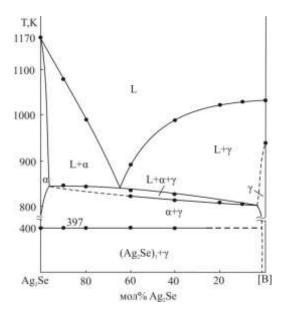


Fig. 6. Polythermal section Ag₂Se-[B] of the phase diagram of the Ag₂Se-PbSe-AgSbSe₂ system.

CONCLUSION

New experimental data on phase equilibria in the quasi-ternary Ag₂Se-PbSe-AgSbSe₂ system were obtained. Two polythermal sections, an isothermal section at 300 K of the phase diagram, and a liquidus surface projection were constructed. Broad

range of solid solutions based on $AgSbSe_2$ (γ -phase) and insignificant solubility on the basis of Ag_2Se (α -phase) and PbSe (β -phase) were revealed in the system, and the fields of primary crystallization of these phases determined.

Acknowledgments

This work was supported by the Science Development Foundation under the President of the Republic of Azerbaijan – Grant № EİF-BGM-4-RFTF-1/2017-21/11/4-M-12.

REFERENCES

- 1. Chu S., Majumdar A. Opportunities and challenges for a sustainable energy future. *Nature*, 2012, 488: 294–303.
- 2. Gayner C., Kar. K.K. Recent advances in thermoelectric materials. *Progress in*
- *Materials Science.* 2016, vol. 83, pp. 330–382.
- 3. He W., Zhang G., Zhang X., et al. Recent development and application of thermoelectric generator and cooler. *Applied Energy.* 2015, 143: 1–25.

- 4. Shevelkov A.V. Chemical aspects of the design of thermoelectric materials. *Russ. Chem. Rev.*, 2008, vol. 77, pp. 1-19.
- 5. Zhang X, Zhao L-D. Thermoelectric materials: Energy conversion between heat and electricity *Journal of Materiomics*. 2015, 1: 92–105.
- 6. Tesfaye F., Moroz M. An Overview of Advanced Chalcogenide Thermoelectric Materials and Their Applications. *Journal of Electronic Research and Application*, 2018, vol. 2 (2), pp.28-41.
- 7. Hu W.Q., Shi Y.F., Wu L.M. Synthesis and Shape Control of Ag₈SnS₆ Submicropyramids with High Surface Energy. *Cryst.Growth Des.*, 2012, vol.12, p. 3458.
- 8. Kusz B., Miruszewski T., Bochentyn B. et al. Structure and Thermoelectric Properties of Te-Ag-Ge-Sb (TAGS) Materials Obtained by Reduction of Melted Oxide Substrates. *J. Electron. Mater.*, 2016, vol. 45(2), pp. 1085-1093.
- 9. Tan G., Shi F., Sun H. et al. SnTe–AgBiTe₂ as an efficient thermoelectric material with low thermal conductivity. *J. Mater. Chem. A.* 2014, vol. 2(48), pp. 20849–20854.
- 10. Ni J.E., Case E.D. Thermal Fatigue of Cast and Hot-Pressed Lead-Antimony-Silver-Tellurium (LAST) Thermoelectric Materials. *J. Electron. Mater.*, 2012, vol. 42(7), pp.1382–1388.
- 11. Hoang K., Mahanti S.D., Atomic and electronic structures of I-V-VI₂ ternary chalcogenides. Journal of Science: *Advanced Materials and Devices*, 2016, vol. 1, pp. 51-56.
- 12. Guin S.N., Chatterjee A., Biswas K. Enhanced thermoelectric performance in p-type AgSbSe₂ by Cd-doping. *RSC Adv.*, 2014, vol. 4 (23), p. 11811.
- 13. Guin S.N., Srihari V., Biswas, K. Promising thermoelectric performance in n-type AgBiSe₂: Effect of aliovalent anion dopin. *J.Mat.Chem.* A., 2015, vol. 3, pp. 648-652.
- 14. Lee J.K., Oh M.-W., Ryu, B. et al. Enhanced thermoelectric properties of

- AgSbTe₂ obtained by controlling heterophases with Ce doping. *Nature Scientific Reports*, 2017, vol. 7, Article number: 4496.
- 15. Zhang J., Qin X., Li D., et al. Optimized Thermoelectric Properties of AgSbTe₂ through Adjustment of Fabrication Parameters. *Electronic Materials Letters*. 2015, vol. 11, pp. 133-137.
- 16. Babanly M.B., Chulkov E.V., Aliev Z.S. et al. Phase diagrams in the materials science of topological insulators based on metal chalcogenides. *Russ. J. Inorg. Chem.*, 2017, vol. 62 (13), pp. 1703–1729.
- 17. Babanly D.M., Tagiyev D.B. Physicochemical aspects of ternary and complex phases development based on thallium chalcohalides. *Chemical Problems*. 2018, no. 2, pp.153-177.
- 18. Zlomanov V.P., Khoviv A.M., Zavrazhnov A.Yu. Physicochemical Analysis and Synthesis of Nonstoichiometric Solids. In: *InTech. Materials Science Advanced Topics*, 2013, pp.103-128.
- 19. Aliev I.I., Babanly K.N., Babanly N.B. Solid solutions in the Ag₂Se-PbSe-Bi₂Se₃ system // *Inorganic Materials*. 2008, vol. 44 (11), pp. 1179-1182.
- 20. Babanly D.M., Aliev I.I., Babanly K.N., Yusibov Yu.A. Phase equilibria in the Ag₂Te-PbTe-Bi₂Te₃ system. *Russ. J. Inorg. Chem.*, 2011, vol. 56 (9), pp. 1472-1477.
- 21. Mashadiyeva L.F., Kevser J.O., Aliev I.I. et al. The Ag₂Te-SnTe-Bi₂Te₃ system and thermodynamic properties of the (2SnTe)1-x(AgBiTe₂)x solid solutions series. *J. Alloys Compd.*, 2017, vol. 724, pp. 641-648.
- 22. Mashadiyeva L.F., KevserJ.O., Aliev I.I. et al. Phase Equilibria in the Ag₂Te-SnTe-Sb₂Te₃ System and Thermodynamic Properties of the (2SnTe)_{12x}(AgSbTe₂)_x Solid Solution. *Phase equilibria and diffusion*. 2017, vol. 38 (5), pp. 603-614.
- 23. Mashadieva L. F., Yusibov Yu. A., Kevser Dzh. and Babanly M. B.

- Thermodynamic Study of Solid Solutions in the SnTe–AgSbTe2 System by Means of EMF with Solid Electrolyte Ag₄RbI₅. *Russ. J. Phys. Chem. A.* 2017, vol. 91 (9) pp. 1642–1646.
- 24. Madelung O. Semiconductors: Data Handbook, Springer Berlin Heidelberg, 2013. 691 p.
- 25. Shelimova L.E., Tomashik V.N., Grytsiv V.I. *Diagrammy sostoyaniya v poluprovodnikovom materialovedenii (sistemy na osnove khal'kogenidov Si, Ge, Sn, Pb)* [Phase Diagrams in Semiconductor Materials Research: Systems of Si, Ge, Sn, and Pb Chalcogenides]. Moscow: Nauka Publ., 1991.
- 26. Lead selenide (PbSe) crystal structure, lattice parameters, thermal expansion. In: Madelung O., Rössler U., Schulz M. (eds) Non-Tetrahedrally Bonded Elements and Binary Compounds I. Landolt-Börnstein Group III Condensed Matter, vol 41C. Springer, Berlin, Heidelberg, 1998.
- 27. Rickert H. Electrochemistry of Solids: An Introduction, Springer Science & Business Media, 2012, 240 p.
- 28. Binary alloy phase diagrams, Ed. T.B. Massalski, second edition. ASM International, Materials Park, Ohio, 1990, 3589p.
- 29. Feng D., Taskinen P., Tesfaye F. Thermodynamic stability of Ag₂Se from 350 to 500 K by a solid state galvanic cell. *Solid State Ionics*, 2013. vol. 231, pp. 1-4.
- 30. Yu J., Yun H. Reinvestigation of the low-temperature form of Ag₂Se (naumannite) based on single-crystal data. *Acta*

- Crystallogr., Sect. E: Structure Reports Online, 2011, vol. 67, i45.
- 31. Oliveria M., McMullan R.K., Wuensch B.J. Single crystal neutron diffraction analysis of the cation distribution in the high-temperature phases α -Cu_{2-x}S, α -Cu_{2-x}Se, and α -Ag₂Se. *Solid State lonics*. 1988, vol. 28-30, pp. 1332-1337.
- 32. Boutserrit A., Ollitrault-Fichet R., Rivet J. et Dugue J. Description du systeme ternaire Ag-Sb-Se. *J. Alloys Comp.*, 1993, vol. 191, pp. 223-232.
- 33. Geller S., Wernick J.H. Ternary semiconducting compounds witch sodium chloride-like structure: AgSbSe₂, AgSbTe₂, AgBiSe₂, AgBiSe₂. *Acta Cryst.*, 1959, vol. 12, pp. 46-52.
- 34. Lagendre B., Souleau C. Le Sisteme Ternaire Argent-Plomb_Selenium. *Bull.Soc.Chim.Fr*, 1972, no. 2, pp. 463-472.
- 35. Novoselova A.V., Shleifman Z.G., Zlomanov V.P., Soloma R.K. System Silver Selenide–Lead Selenide. *Izv. Akad. Nauk SSSR, Neorg. Mater.* 1967, vol. 3, no. 9, pp. 1143-1146. (In Russian).
- 36. Mansimova Sh.H., Babanly K.N., Mashadiyeva L.F. Phase equilibria in the PbSe-AgSbSe₂ system. *Chemical Problems*. 2018, no. 4, p. 530-536.
- 37. Emsley J. The elements, 3rd edition. Clarendon, Oxford University Press, 1998.
- 38. Glazov V.M., Burkhanov A.S., Saleeva N.M. By the method of obtaining single-phase chalcogenides of copper and silver. *Izv. Akad. Nauk SSSR, Neorg. Mater.* 1977, vol.13, no. 5, p. 917. (In Russian).

Ag₂Se-PbSe-AgSbSe₂ SİSTEMİNDƏ FAZA TARAZLIQLARI

¹Ş.H. Mənsimova, ²L.F. Məşədiyeva, ²K.N. Babanlı², ¹R.C. Mirzəyeva, ²M.B. Babanlı

¹Bakı Dövlət Universiteti
Az 1148 Bakı, Z.Xəlilov küç, 23; e-mail: <u>info@bsu.az</u>

²AMEA akademik M.Nağıyev adına Kataliz və Qeyri-üzvi Kimya İnstitutu
AZ 1143 Bakı, H.Cavid pr.113; e-mail: <u>leylafm76@gmail.com</u>

İşdə Ag₂Se-PbSe-AgSbSe₂ sistemində faza tarazlıqlarının differensial-termiki və rentgenfaza analizi üsulları ilə tədqiqinin nəticələri verilir. Təcrübi nəticələr əsasında sistemin faza diaqramının AgSbSe₂-(PbSe)_{0,5}(Ag₂Se)_{0,5} və Ag₂Se-(PbSe)_{0,5}(AgSbSe₂)_{0,5} politermik kəsikləri, 300 K-də izotermik kəsiyi və likvidus səthinin proyeksiyası qurulmuşdur. Göstərilmişdir ki, o, Ag-Pb-Sb-Se dördkomponentli sisteminin kvaziüçlü müstəvisidir və nonvariant keçid tarazlığı ilə xarakterizə olunur. Sistemdə fazaların ilkin kristallaşma sahələri, non- və monovariant tarazlıqların tipləri və koordinatları təyin edilmişdir. AgSbSe₂ birləşməsi əsasında PbSe-AgSbSe₂ kəsiyi boyunca geniş (~80 mol%) bərk məhlul sahəsi aşkar olunmuşdur.

Açar sözlər: faza diaqramı, bərk məhlullar, likvidus səthi, gümüş-stibium selenidi, qurğuşun monoselenid.

ФАЗОВЫЕ PABHOBECUЯ В CUCTEME Ag₂Se-PbSe-AgSbSe₂

¹Ш.Г. Мансимова, ²Л.Ф. Машадиева, ²К.Н. Бабанлы, ¹Р.Дж. Мирзоева, ²М.Б. Бабанлы

¹Бакинский Государственный Университет AZ 1073 Баку, ул. 3. Халилова 23, e-mail: <u>info@bsu.az</u>
²Институт Катализа и Неорганической Химии им. акад. М. Нагиева Национальной АН Азербайджана, AZ 1143 Баку, пр.Г. Джавида,113; e-mail: <u>leylafm76@gmail.com</u>

В работе представлены результаты исследования фазовых равновесий в системе $Ag_2Se-PbSe-AgSbSe_2$ методами дифференциального термического и рентгенофазового анализов. На основании экспериментальных данных построены политермические сечения $AgSbSe_2-(PbSe)_{0.5}(Ag_2Se)_{0.5}$ и $Ag_2Se-(PbSe)_{0.5}(AgSbSe_2)_{0.5}$, изотермическое сечение при 300 K фазовой диаграммы, а также проекция поверхности ликвидуса. Показано, что данная система является квазитройной плоскостью четверной системы Ag-Pb-Sb-Se и характеризуется наличием нонвариантного переходного равновесия. Определены поля первичной кристаллизации фаз, типы и координаты нон- и моновариантных равновесий. Выявлена широкая область (\sim 80 мол%) твердых растворов на основе $AgSbSe_2$ вдоль разреза $PbSe-AgSbSe_2$.

Ключевые слова: фазовая диаграмма, твердые растворы, поверхность ликвидуса, селенид серебра-сурьмы, моноселенид свинца.